1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
//! This crate provides efficient Modular arithmetic operations for various integer types,
//! including primitive integers and `num-bigint`. The latter option is enabled optionally.
//!
//! To achieve fast modular arithmetics, convert integers to any [ModularInteger] implementation
//! use static `new()` or associated [ModularInteger::new()]. [MontgomeryInt] is a builtin implementation
//! of [ModularInteger] based on the Montgomery form.
//!
//! Example code:
//! ```rust
//! use num_modular::{ModularCoreOps, ModularInteger, MontgomeryInt};
//!
//! // directly using methods in ModularCoreOps
//! let (x, y, m) = (12u8, 13u8, 5u8);
//! assert_eq!(x.mulm(y, &m), x * y % m);
//!
//! // convert integers into ModularInteger
//! let mx = MontgomeryInt::new(x, m);
//! let my = mx.new(y); // faster than static new()
//! assert_eq!((mx * my).residue(), x * y % m);
//! ```
//!

// XXX: consider implementing lookup table based modulo?
// REF: https://eprint.iacr.org/2014/040.pdf

#![no_std]
#[cfg(any(feature = "std", test))]
extern crate std;

use core::ops::{Add, Mul, Neg, Sub};

/// This trait describes core modular arithmetic operations
pub trait ModularCoreOps<Rhs = Self, Modulus = Self> {
    type Output;

    /// Return (self + rhs) % m
    fn addm(self, rhs: Rhs, m: Modulus) -> Self::Output;

    /// Return (self + rhs) % m
    fn subm(self, rhs: Rhs, m: Modulus) -> Self::Output;

    /// Return (self * rhs) % m
    fn mulm(self, rhs: Rhs, m: Modulus) -> Self::Output;

    /// Return (-self) % m and make sure the result is normalized in range [0,m)
    fn negm(self, m: Modulus) -> Self::Output;
}

// TODO (v0.3): checked_invm, checked_jacobi, checked_kronecker, checked_legendre
/// This trait describes modular arithmetic operations
pub trait ModularOps<Rhs = Self, Modulus = Self>: ModularCoreOps<Rhs, Modulus> {
    /// Return (self ^ exp) % m
    fn powm(self, exp: Rhs, m: Modulus) -> Self::Output;

    /// Calculate modular inverse (x such that self*x = 1 mod m).
    ///
    /// This operation is only available for integer that is coprime to `m`
    fn invm(self, m: Modulus) -> Option<Self::Output>
    where
        Self: Sized;

    /// Calculate Jacobi Symbol (a|n), where a is self
    ///
    /// # Panics
    /// if n is negative or even
    fn jacobi(self, n: Modulus) -> i8;

    /// Calculate Kronecker Symbol (a|n), where a is self
    fn kronecker(self, n: Modulus) -> i8;

    /// Calculate Legendre Symbol (a|n), where a is self.
    ///
    /// Note that this function doesn't perform primality check, since
    /// is costly. So if n is not a prime, the result is not reasonable.
    ///
    /// # Panics
    /// if n is not prime
    fn legendre(self, n: Modulus) -> i8;

    // TODO: Modular sqrt aka Quadratic residue, follow the behavior of FLINT `n_sqrtmod`
    // fn sqrtm(self, m: Modulus);

    // TODO: Discrete log aka index, follow the behavior of FLINT `n_discrete_log_bsgs`
    // fn logm(self, base: Modulus, m: Modulus);
}

/// Provides a utility function to convert signed integers into unsigned modular form
pub trait ModularAbs<Modulus> {
    /// Return |self| % m
    fn absm(self, m: &Modulus) -> Modulus;
}

/// Represents an number defined in a modulo ring ℤ/nℤ
///
/// The operators should panic if the modulus of two number
/// are not the same.
pub trait ModularInteger:
    Sized
    + PartialEq
    + Add<Self, Output = Self>
    + Sub<Self, Output = Self>
    + Neg<Output = Self>
    + Mul<Self, Output = Self>
{
    /// The underlying representation type of the integer
    type Base;

    /// Return the modulus of the ring
    fn modulus(&self) -> &Self::Base;

    /// Return the normalized residue of this integer in the ring
    fn residue(&self) -> Self::Base;

    /// Convert an normal integer into the same ring.
    ///
    /// This method should be perferred over the static
    /// constructor to prevent unnecessary overhead of pre-computation.
    fn new(&self, n: Self::Base) -> Self;
}

mod barret;
mod double;
mod monty;
mod prim;

pub use double::{udouble, umax};
#[cfg(std)]
pub use monty::MontgomeryBigint;
pub use monty::{Montgomery, MontgomeryInt};

#[cfg(feature = "num-bigint")]
mod bigint;

// tests for ModularOps goes here
#[cfg(test)]
mod tests;