1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
use crate::{DualNum, DualNumFloat};
use num_traits::{Float, FloatConst, FromPrimitive, Inv, Num, One, Signed, Zero};
use std::convert::Infallible;
use std::fmt;
use std::iter::{Product, Sum};
use std::marker::PhantomData;
use std::ops::{
    Add, AddAssign, Div, DivAssign, Mul, MulAssign, Neg, Rem, RemAssign, Sub, SubAssign,
};

/// A scalar hyper-dual number for the calculation of second partial derivatives.
#[derive(PartialEq, Eq, Copy, Clone, Debug)]
pub struct HyperDual<T: DualNum<F>, F> {
    /// Real part of the hyper-dual number
    pub re: T,
    /// Partial derivative part of the hyper-dual number
    pub eps1: T,
    /// Partial derivative part of the hyper-dual number
    pub eps2: T,
    /// Second partial derivative part of the hyper-dual number
    pub eps1eps2: T,
    f: PhantomData<F>,
}

pub type HyperDual32 = HyperDual<f32, f32>;
pub type HyperDual64 = HyperDual<f64, f64>;

impl<T: DualNum<F>, F> HyperDual<T, F> {
    /// Create a new hyper-dual number from its fields.
    #[inline]
    pub fn new(re: T, eps1: T, eps2: T, eps1eps2: T) -> Self {
        Self {
            re,
            eps1,
            eps2,
            eps1eps2,
            f: PhantomData,
        }
    }
}

impl<T: DualNum<F>, F> HyperDual<T, F> {
    /// Set the partial derivative part w.r.t. the 1st variable to 1.
    #[inline]
    pub fn derivative1(mut self) -> Self {
        self.eps1 = T::one();
        self
    }

    /// Set the partial derivative part w.r.t. the 2nd variable to 1.
    #[inline]
    pub fn derivative2(mut self) -> Self {
        self.eps2 = T::one();
        self
    }
}

impl<T: DualNum<F>, F> HyperDual<T, F> {
    /// Create a new hyper-dual number from the real part.
    #[inline]
    pub fn from_re(re: T) -> Self {
        Self::new(re, T::zero(), T::zero(), T::zero())
    }
}

/// Calculate second partial derivatives with respect to scalars.
/// ```
/// # use approx::assert_relative_eq;
/// # use num_dual::{second_partial_derivative, DualNum, HyperDual64};
/// # use nalgebra::SVector;
/// let fun = |x: HyperDual64, y: HyperDual64| (x.powi(2) + y.powi(2)).sqrt();
/// let (f, dfdx, dfdy, d2fdxdy) = second_partial_derivative(fun, 4.0, 3.0);
/// assert_eq!(f, 5.0);
/// assert_relative_eq!(dfdx, 0.8);
/// assert_relative_eq!(dfdy, 0.6);
/// assert_relative_eq!(d2fdxdy, -0.096);
/// ```
pub fn second_partial_derivative<G, T: DualNum<F>, F>(g: G, x: T, y: T) -> (T, T, T, T)
where
    G: FnOnce(HyperDual<T, F>, HyperDual<T, F>) -> HyperDual<T, F>,
{
    try_second_partial_derivative(|x, y| Ok::<_, Infallible>(g(x, y)), x, y).unwrap()
}

/// Variant of [second_partial_derivative] for fallible functions.
pub fn try_second_partial_derivative<G, T: DualNum<F>, F, E>(
    g: G,
    x: T,
    y: T,
) -> Result<(T, T, T, T), E>
where
    G: FnOnce(HyperDual<T, F>, HyperDual<T, F>) -> Result<HyperDual<T, F>, E>,
{
    let x = HyperDual::from_re(x).derivative1();
    let y = HyperDual::from_re(y).derivative2();
    g(x, y).map(|r| (r.re, r.eps1, r.eps2, r.eps1eps2))
}

/* chain rule */
impl<T: DualNum<F>, F: Float> HyperDual<T, F> {
    #[inline]
    fn chain_rule(&self, f0: T, f1: T, f2: T) -> Self {
        Self::new(
            f0,
            self.eps1.clone() * f1.clone(),
            self.eps2.clone() * f1.clone(),
            self.eps1eps2.clone() * f1 + self.eps1.clone() * self.eps2.clone() * f2,
        )
    }
}

/* product rule */
impl<'a, 'b, T: DualNum<F>, F: Float> Mul<&'a HyperDual<T, F>> for &'b HyperDual<T, F> {
    type Output = HyperDual<T, F>;
    #[inline]
    fn mul(self, other: &HyperDual<T, F>) -> HyperDual<T, F> {
        HyperDual::new(
            self.re.clone() * other.re.clone(),
            other.eps1.clone() * self.re.clone() + self.eps1.clone() * other.re.clone(),
            other.eps2.clone() * self.re.clone() + self.eps2.clone() * other.re.clone(),
            other.eps1eps2.clone() * self.re.clone()
                + self.eps1.clone() * other.eps2.clone()
                + other.eps1.clone() * self.eps2.clone()
                + self.eps1eps2.clone() * other.re.clone(),
        )
    }
}

/* quotient rule */
impl<'a, 'b, T: DualNum<F>, F: Float> Div<&'a HyperDual<T, F>> for &'b HyperDual<T, F> {
    type Output = HyperDual<T, F>;
    #[inline]
    fn div(self, other: &HyperDual<T, F>) -> HyperDual<T, F> {
        let inv = other.re.recip();
        let inv2 = inv.clone() * &inv;
        HyperDual::new(
            self.re.clone() * &inv,
            (self.eps1.clone() * other.re.clone() - other.eps1.clone() * self.re.clone())
                * inv2.clone(),
            (self.eps2.clone() * other.re.clone() - other.eps2.clone() * self.re.clone())
                * inv2.clone(),
            self.eps1eps2.clone() * inv.clone()
                - (other.eps1eps2.clone() * self.re.clone()
                    + self.eps1.clone() * other.eps2.clone()
                    + other.eps1.clone() * self.eps2.clone())
                    * inv2.clone()
                + other.eps1.clone()
                    * other.eps2.clone()
                    * ((T::one() + T::one()) * self.re.clone() * inv2 * inv),
        )
    }
}

/* string conversions */
impl<T: DualNum<F>, F: fmt::Display> fmt::Display for HyperDual<T, F> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(
            f,
            "{} + {}ε1 + {}ε2 + {}ε1ε2",
            self.re, self.eps1, self.eps2, self.eps1eps2
        )
    }
}

impl_second_derivatives!(HyperDual, [eps1, eps2, eps1eps2]);
impl_dual!(HyperDual, [eps1, eps2, eps1eps2]);