1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
#![allow(clippy::excessive_precision)]
use crate::DualNum;
use num_traits::{Float, Zero};
use std::f64::consts::{FRAC_2_PI, FRAC_PI_4};

/// Implementation of bessel functions for double precision (hyper) dual numbers.
pub trait BesselDual: DualNum<f64> + Copy {
    /// 0th order bessel function of the first kind
    fn bessel_j0(mut self) -> Self {
        if self.is_negative() {
            self = -self;
        }

        if self.re() <= 5.0 {
            let z = self * self;
            if self.re() < 1.0e-5 {
                return Self::one() - z / 4.0;
            }

            (z - DR1) * (z - DR2) * polevl(z, &RP0) / p1evl(z, &RQ0)
        } else {
            let w = self.recip() * 5.0;
            let q = w * w;
            let p = polevl(q, &PP0) / polevl(q, &PQ0);
            let q = polevl(q, &QP0) / p1evl(q, &QQ0);
            let (s, c) = (self - FRAC_PI_4).sin_cos();
            let p = p * c - w * q * s;
            p * (Self::from(FRAC_2_PI) / self).sqrt()
        }
    }

    /// 1st order bessel function of the first kind
    fn bessel_j1(self) -> Self {
        let x = self.abs();
        if x.re() <= 5.0 {
            {
                let z = self * self;
                polevl(z, &RP1) / p1evl(z, &RQ1) * self * (z - Z1) * (z - Z2)
            }
        } else {
            let x = self.abs();
            let w = x.recip() * 5.0;
            let z = w * w;
            let p = polevl(z, &PP1) / polevl(z, &PQ1);
            let q = polevl(z, &QP1) / p1evl(z, &QQ1);
            let (s, c) = (x - 3.0 * FRAC_PI_4).sin_cos();
            let p = p * c - w * q * s;
            self.signum() * p * (Self::from(FRAC_2_PI) / x).sqrt()
        }
    }

    /// 2nd order bessel function of the first kind
    fn bessel_j2(self) -> Self {
        if self.re().is_zero() {
            self * self / 8.0 * (self * self / 24.0 + 1.0)
        } else {
            self.bessel_j1() * 2.0 / self - self.bessel_j0()
        }
    }
}

impl<T: DualNum<f64> + Copy> BesselDual for T {}

const DR1: f64 = 5.78318596294678452118E0;
const DR2: f64 = 3.04712623436620863991E1;

const RP0: [f64; 4] = [
    -4.79443220978201773821E9,
    1.95617491946556577543E12,
    -2.49248344360967716204E14,
    9.70862251047306323952E15,
];
const RQ0: [f64; 8] = [
    4.99563147152651017219E2,
    1.73785401676374683123E5,
    4.84409658339962045305E7,
    1.11855537045356834862E10,
    2.11277520115489217587E12,
    3.10518229857422583814E14,
    3.18121955943204943306E16,
    1.71086294081043136091E18,
];

const PP0: [f64; 7] = [
    7.96936729297347051624E-4,
    8.28352392107440799803E-2,
    1.23953371646414299388E0,
    5.44725003058768775090E0,
    8.74716500199817011941E0,
    5.30324038235394892183E0,
    9.99999999999999997821E-1,
];
const PQ0: [f64; 7] = [
    9.24408810558863637013E-4,
    8.56288474354474431428E-2,
    1.25352743901058953537E0,
    5.47097740330417105182E0,
    8.76190883237069594232E0,
    5.30605288235394617618E0,
    1.00000000000000000218E0,
];

const QP0: [f64; 8] = [
    -1.13663838898469149931E-2,
    -1.28252718670509318512E0,
    -1.95539544257735972385E1,
    -9.32060152123768231369E1,
    -1.77681167980488050595E2,
    -1.47077505154951170175E2,
    -5.14105326766599330220E1,
    -6.05014350600728481186E0,
];
const QQ0: [f64; 7] = [
    6.43178256118178023184E1,
    8.56430025976980587198E2,
    3.88240183605401609683E3,
    7.24046774195652478189E3,
    5.93072701187316984827E3,
    2.06209331660327847417E3,
    2.42005740240291393179E2,
];

const Z1: f64 = 1.46819706421238932572E1;
const Z2: f64 = 4.92184563216946036703E1;

const RP1: [f64; 4] = [
    -8.99971225705559398224E8,
    4.52228297998194034323E11,
    -7.27494245221818276015E13,
    3.68295732863852883286E15,
];
const RQ1: [f64; 8] = [
    6.20836478118054335476E2,
    2.56987256757748830383E5,
    8.35146791431949253037E7,
    2.21511595479792499675E10,
    4.74914122079991414898E12,
    7.84369607876235854894E14,
    8.95222336184627338078E16,
    5.32278620332680085395E18,
];

const PP1: [f64; 7] = [
    7.62125616208173112003E-4,
    7.31397056940917570436E-2,
    1.12719608129684925192E0,
    5.11207951146807644818E0,
    8.42404590141772420927E0,
    5.21451598682361504063E0,
    1.00000000000000000254E0,
];
const PQ1: [f64; 7] = [
    5.71323128072548699714E-4,
    6.88455908754495404082E-2,
    1.10514232634061696926E0,
    5.07386386128601488557E0,
    8.39985554327604159757E0,
    5.20982848682361821619E0,
    9.99999999999999997461E-1,
];

const QP1: [f64; 8] = [
    5.10862594750176621635E-2,
    4.98213872951233449420E0,
    7.58238284132545283818E1,
    3.66779609360150777800E2,
    7.10856304998926107277E2,
    5.97489612400613639965E2,
    2.11688757100572135698E2,
    2.52070205858023719784E1,
];
const QQ1: [f64; 7] = [
    7.42373277035675149943E1,
    1.05644886038262816351E3,
    4.98641058337653607651E3,
    9.56231892404756170795E3,
    7.99704160447350683650E3,
    2.82619278517639096600E3,
    3.36093607810698293419E2,
];

fn polevl<T: DualNum<F> + Copy, F: Float>(x: T, coef: &[F]) -> T {
    coef.iter()
        .skip(1)
        .fold(T::from(coef[0]), |acc, &c| acc * x + c)
}

fn p1evl<T: DualNum<F> + Copy, F: Float>(x: T, coef: &[F]) -> T {
    coef.iter().fold(T::one(), |acc, &c| acc * x + c)
}