1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321
use crate::{DualNum, DualNumFloat};
use num_traits::{Float, FloatConst, FromPrimitive, Inv, Num, One, Signed, Zero};
use std::convert::Infallible;
use std::fmt;
use std::iter::{Product, Sum};
use std::marker::PhantomData;
use std::ops::*;
/// A scalar hyper-hyper-dual number for the calculation of third partial derivatives.
#[derive(PartialEq, Eq, Copy, Clone, Debug)]
pub struct HyperHyperDual<T, F = T> {
/// Real part of the hyper-hyper-dual number
pub re: T,
/// First partial derivative part of the hyper-hyper-dual number
pub eps1: T,
/// First partial derivative part of the hyper-hyper-dual number
pub eps2: T,
/// First partial derivative part of the hyper-hyper-dual number
pub eps3: T,
/// Second partial derivative part of the hyper-hyper-dual number
pub eps1eps2: T,
/// Second partial derivative part of the hyper-hyper-dual number
pub eps1eps3: T,
/// Second partial derivative part of the hyper-hyper-dual number
pub eps2eps3: T,
/// Third partial derivative part of the hyper-hyper-dual number
pub eps1eps2eps3: T,
f: PhantomData<F>,
}
pub type HyperHyperDual32 = HyperHyperDual<f32>;
pub type HyperHyperDual64 = HyperHyperDual<f64>;
impl<T: DualNum<F>, F> HyperHyperDual<T, F> {
/// Create a new hyper-hyper-dual number from its fields.
#[inline]
#[allow(clippy::too_many_arguments)]
pub fn new(
re: T,
eps1: T,
eps2: T,
eps3: T,
eps1eps2: T,
eps1eps3: T,
eps2eps3: T,
eps1eps2eps3: T,
) -> Self {
Self {
re,
eps1,
eps2,
eps3,
eps1eps2,
eps1eps3,
eps2eps3,
eps1eps2eps3,
f: PhantomData,
}
}
/// Set the partial derivative part w.r.t. the 1st variable to 1.
#[inline]
pub fn derivative1(mut self) -> Self {
self.eps1 = T::one();
self
}
/// Set the partial derivative part w.r.t. the 2nd variable to 1.
#[inline]
pub fn derivative2(mut self) -> Self {
self.eps2 = T::one();
self
}
/// Set the partial derivative part w.r.t. the 3rd variable to 1.
#[inline]
pub fn derivative3(mut self) -> Self {
self.eps3 = T::one();
self
}
/// Create a new hyper-hyper-dual number from the real part.
#[inline]
pub fn from_re(re: T) -> Self {
Self::new(
re,
T::zero(),
T::zero(),
T::zero(),
T::zero(),
T::zero(),
T::zero(),
T::zero(),
)
}
}
/// Calculate third partial derivatives with respect to scalars.
/// ```
/// # use approx::assert_relative_eq;
/// # use num_dual::{third_partial_derivative, DualNum, HyperHyperDual64};
/// # use nalgebra::SVector;
/// let fun = |x: HyperHyperDual64, y: HyperHyperDual64, z: HyperHyperDual64| (x.powi(2) + y.powi(2) + z.powi(2)).powi(3);
/// let (f, dfdx, dfdy, dfdz, d2fdxdy, d2fdxdz, d2fdydz, d3fdxdydz) = third_partial_derivative(fun, 1.0, 2.0, 3.0);
/// println!("{:?}", third_partial_derivative(fun, 1.0, 2.0, 3.0));
/// assert_eq!(f, 2744.0);
/// assert_relative_eq!(dfdx, 1176.0);
/// assert_relative_eq!(dfdy, 2352.0);
/// assert_relative_eq!(dfdz, 3528.0);
/// assert_relative_eq!(d2fdxdy, 672.0);
/// assert_relative_eq!(d2fdxdz, 1008.0);
/// assert_relative_eq!(d2fdydz, 2016.0);
/// assert_relative_eq!(d3fdxdydz, 288.0);
/// ```
pub fn third_partial_derivative<G, T: DualNum<F>, F>(
g: G,
x: T,
y: T,
z: T,
) -> (T, T, T, T, T, T, T, T)
where
G: FnOnce(
HyperHyperDual<T, F>,
HyperHyperDual<T, F>,
HyperHyperDual<T, F>,
) -> HyperHyperDual<T, F>,
{
try_third_partial_derivative(|x, y, z| Ok::<_, Infallible>(g(x, y, z)), x, y, z).unwrap()
}
/// Variant of [third_partial_derivative] for fallible functions.
#[allow(clippy::type_complexity)]
pub fn try_third_partial_derivative<G, T: DualNum<F>, F, E>(
g: G,
x: T,
y: T,
z: T,
) -> Result<(T, T, T, T, T, T, T, T), E>
where
G: FnOnce(
HyperHyperDual<T, F>,
HyperHyperDual<T, F>,
HyperHyperDual<T, F>,
) -> Result<HyperHyperDual<T, F>, E>,
{
let mut x = HyperHyperDual::from_re(x);
let mut y = HyperHyperDual::from_re(y);
let mut z = HyperHyperDual::from_re(z);
x.eps1 = T::one();
y.eps2 = T::one();
z.eps3 = T::one();
g(x, y, z).map(|r| {
(
r.re,
r.eps1,
r.eps2,
r.eps3,
r.eps1eps2,
r.eps1eps3,
r.eps2eps3,
r.eps1eps2eps3,
)
})
}
/// Calculate the third partial derivative of a scalar function
/// with arbitrary many variables.
/// ```
/// # use approx::assert_relative_eq;
/// # use num_dual::{third_partial_derivative_vec, DualNum, HyperHyperDual64};
/// # use nalgebra::SVector;
/// let fun = |x: &[HyperHyperDual64]| x[0].powi(3)*x[1].powi(2);
/// let (f, dfdx, dfdy, dfdz, d2fdxdy, d2fdxdz, d2fdydz, d3fdxdydz) = third_partial_derivative_vec(fun, &[1.0, 2.0], 0, 0, 1);
/// # println!("{:?}", third_partial_derivative_vec(fun, &[1.0, 2.0, 3.0], 0, 0, 1));
/// assert_eq!(f, 4.0);
/// assert_relative_eq!(dfdx, 12.0);
/// assert_relative_eq!(dfdy, 12.0);
/// assert_relative_eq!(dfdz, 4.0);
/// assert_relative_eq!(d2fdxdy, 24.0);
/// assert_relative_eq!(d2fdxdz, 12.0);
/// assert_relative_eq!(d2fdydz, 12.0);
/// assert_relative_eq!(d3fdxdydz, 24.0);
/// ```
pub fn third_partial_derivative_vec<G, T: DualNum<F>, F>(
g: G,
x: &[T],
i: usize,
j: usize,
k: usize,
) -> (T, T, T, T, T, T, T, T)
where
G: FnOnce(&[HyperHyperDual<T, F>]) -> HyperHyperDual<T, F>,
{
try_third_partial_derivative_vec(|x| Ok::<_, Infallible>(g(x)), x, i, j, k).unwrap()
}
/// Variant of [third_partial_derivative_vec] for fallible functions.
#[allow(clippy::type_complexity)]
pub fn try_third_partial_derivative_vec<G, T: DualNum<F>, F, E>(
g: G,
x: &[T],
i: usize,
j: usize,
k: usize,
) -> Result<(T, T, T, T, T, T, T, T), E>
where
G: FnOnce(&[HyperHyperDual<T, F>]) -> Result<HyperHyperDual<T, F>, E>,
{
let mut x: Vec<_> = x
.iter()
.map(|x| HyperHyperDual::from_re(x.clone()))
.collect();
x[i].eps1 = T::one();
x[j].eps2 = T::one();
x[k].eps3 = T::one();
g(&x).map(|r| {
(
r.re,
r.eps1,
r.eps2,
r.eps3,
r.eps1eps2,
r.eps1eps3,
r.eps2eps3,
r.eps1eps2eps3,
)
})
}
impl<T: DualNum<F>, F: Float> HyperHyperDual<T, F> {
#[inline]
fn chain_rule(&self, f0: T, f1: T, f2: T, f3: T) -> Self {
Self::new(
f0,
f1.clone() * &self.eps1,
f1.clone() * &self.eps2,
f1.clone() * &self.eps3,
f1.clone() * &self.eps1eps2 + f2.clone() * &self.eps1 * &self.eps2,
f1.clone() * &self.eps1eps3 + f2.clone() * &self.eps1 * &self.eps3,
f1.clone() * &self.eps2eps3 + f2.clone() * &self.eps2 * &self.eps3,
f1 * &self.eps1eps2eps3
+ f2 * (self.eps1.clone() * &self.eps2eps3
+ self.eps2.clone() * &self.eps1eps3
+ self.eps3.clone() * &self.eps1eps2)
+ f3 * self.eps1.clone() * &self.eps2 * &self.eps3,
)
}
}
impl<'a, 'b, T: DualNum<F>, F: Float> Mul<&'a HyperHyperDual<T, F>> for &'b HyperHyperDual<T, F> {
type Output = HyperHyperDual<T, F>;
#[inline]
fn mul(self, rhs: &HyperHyperDual<T, F>) -> HyperHyperDual<T, F> {
HyperHyperDual::new(
self.re.clone() * &rhs.re,
self.eps1.clone() * &rhs.re + self.re.clone() * &rhs.eps1,
self.eps2.clone() * &rhs.re + self.re.clone() * &rhs.eps2,
self.eps3.clone() * &rhs.re + self.re.clone() * &rhs.eps3,
self.eps1eps2.clone() * &rhs.re
+ self.eps1.clone() * &rhs.eps2
+ self.eps2.clone() * &rhs.eps1
+ self.re.clone() * &rhs.eps1eps2,
self.eps1eps3.clone() * &rhs.re
+ self.eps1.clone() * &rhs.eps3
+ self.eps3.clone() * &rhs.eps1
+ self.re.clone() * &rhs.eps1eps3,
self.eps2eps3.clone() * &rhs.re
+ self.eps2.clone() * &rhs.eps3
+ self.eps3.clone() * &rhs.eps2
+ self.re.clone() * &rhs.eps2eps3,
self.eps1eps2eps3.clone() * &rhs.re
+ self.eps1.clone() * &rhs.eps2eps3
+ self.eps2.clone() * &rhs.eps1eps3
+ self.eps3.clone() * &rhs.eps1eps2
+ self.eps2eps3.clone() * &rhs.eps1
+ self.eps1eps3.clone() * &rhs.eps2
+ self.eps1eps2.clone() * &rhs.eps3
+ self.re.clone() * &rhs.eps1eps2eps3,
)
}
}
impl<'a, 'b, T: DualNum<F>, F: Float> Div<&'a HyperHyperDual<T, F>> for &'b HyperHyperDual<T, F> {
type Output = HyperHyperDual<T, F>;
#[inline]
fn div(self, rhs: &HyperHyperDual<T, F>) -> HyperHyperDual<T, F> {
let rec = T::one() / &rhs.re;
let f0 = rec.clone();
let f1 = -f0.clone() * &rec;
let f2 = f1.clone() * &rec * F::from(-2.0).unwrap();
let f3 = f2.clone() * rec * F::from(-3.0).unwrap();
self * rhs.chain_rule(f0, f1, f2, f3)
}
}
/* string conversions */
impl<T: fmt::Display, F> fmt::Display for HyperHyperDual<T, F> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(
f,
"{} + {}ε1 + {}ε2 + {}ε3 + {}ε1ε2 + {}ε1ε3 + {}ε2ε3 + {}ε1ε2ε3",
self.re,
self.eps1,
self.eps2,
self.eps3,
self.eps1eps2,
self.eps1eps3,
self.eps2eps3,
self.eps1eps2eps3
)
}
}
impl_third_derivatives!(
HyperHyperDual,
[eps1, eps2, eps3, eps1eps2, eps1eps3, eps2eps3, eps1eps2eps3]
);
impl_dual!(
HyperHyperDual,
[eps1, eps2, eps3, eps1eps2, eps1eps3, eps2eps3, eps1eps2eps3]
);