num_dual/
lib.rs

1//! Generalized, recursive, scalar and vector (hyper) dual numbers for the automatic and exact calculation of (partial) derivatives.
2//!
3//! # Example
4//! This example defines a generic scalar and a generic vector function that can be called using any (hyper-) dual number and automatically calculates derivatives.
5//! ```
6//! use num_dual::*;
7//! use nalgebra::SVector;
8//!
9//! fn foo<D: DualNum<f64>>(x: D) -> D {
10//!     x.powi(3)
11//! }
12//!
13//! fn bar<D: DualNum<f64>, const N: usize>(x: SVector<D, N>) -> D {
14//!     x.dot(&x).sqrt()
15//! }
16//!
17//! fn main() {
18//!     // Calculate a simple derivative
19//!     let (f, df) = first_derivative(foo, 5.0);
20//!     assert_eq!(f, 125.0);
21//!     assert_eq!(df, 75.0);
22//!
23//!     // Manually construct the dual number
24//!     let x = Dual64::new(5.0, 1.0);
25//!     println!("{}", foo(x));                     // 125 + 75ε
26//!
27//!     // Calculate a gradient
28//!     let (f, g) = gradient(bar, &SVector::from([4.0, 3.0]));
29//!     assert_eq!(f, 5.0);
30//!     assert_eq!(g[0], 0.8);
31//!
32//!     // Calculate a Hessian
33//!     let (f, g, h) = hessian(bar, &SVector::from([4.0, 3.0]));
34//!     println!("{h}");                            // [[0.072, -0.096], [-0.096, 0.128]]
35//!
36//!     // for x=cos(t) calculate the third derivative of foo w.r.t. t
37//!     let (f0, f1, f2, f3) = third_derivative(|t| foo(t.cos()), 1.0);
38//!     println!("{f3}");                           // 1.5836632930100278
39//! }
40//! ```
41//!
42//! # Usage
43//! There are two ways to use the data structures and functions provided in this crate:
44//! 1. (recommended) Using the provided functions for explicit ([`first_derivative`], [`gradient`], ...) and
45//!    implicit ([`implicit_derivative`], [`implicit_derivative_binary`], [`implicit_derivative_vec`]) functions.
46//! 2. (for experienced users) Using the different dual number types ([`Dual`], [`HyperDual`], [`DualVec`], ...) directly.
47//!
48//! The following examples and explanations focus on the first way.
49//!
50//! # Derivatives of explicit functions
51//! To be able to calculate the derivative of a function, it needs to be generic over the type of dual number used.
52//! Most commonly this would look like this:
53//! ```compile_fail
54//! fn foo<D: DualNum<f64> + Copy>(x: X) -> O {...}
55//! ```
56//! Of course, the function could also use single precision ([`f32`]) or be generic over the precision (`F:` [`DualNumFloat`]).
57//! For now, [`Copy`] is not a supertrait of [`DualNum`] to enable the calculation of derivatives with respect
58//! to a dynamic number of variables. However, in practice, using the [`Copy`] trait bound leads to an
59//! implementation that is more similar to one not using AD and there could be severe performance ramifications
60//! when using dynamically allocated dual numbers.
61//!
62//! The type `X` above is `D` for univariate functions, [`&OVector`](nalgebra::OVector) for multivariate
63//! functions, and `(D, D)` or `(&OVector, &OVector)` for partial derivatives. In the simplest case, the output
64//! `O` is a scalar `D`. However, it is generalized using the [`Mappable`] trait to also include types like
65//! [`Option<D>`] or [`Result<D, E>`], collections like [`Vec<D>`] or [`HashMap<K, D>`], or custom structs that
66//! implement the [`Mappable`] trait. Therefore, it is, e.g., possible to calculate the derivative of a fallible
67//! function:
68//!
69//! ```no_run
70//! # use num_dual::{DualNum, first_derivative};
71//! # type E = ();
72//! fn foo<D: DualNum<f64> + Copy>(x: D) -> Result<D, E> { todo!() }
73//!
74//! fn main() -> Result<(), E> {
75//!     let (val, deriv) = first_derivative(foo, 2.0)?;
76//!     // ...
77//!     Ok(())
78//! }
79//! ```
80//! All dual number types can contain other dual numbers as inner types. Therefore, it is also possible to
81//! use the different derivative functions inside of each other.
82//!
83//! ## Extra arguments
84//! The [`partial`] and [`partial2`] functions are used to pass additional arguments to the function, e.g.:
85//! ```no_run
86//! # use num_dual::{DualNum, first_derivative, partial};
87//! fn foo<D: DualNum<f64> + Copy>(x: D, args: &(D, D)) -> D { todo!() }
88//!
89//! fn main() {
90//!     let (val, deriv) = first_derivative(partial(foo, &(3.0, 4.0)), 5.0);
91//! }
92//! ```
93//! All types that implement the [`DualStruct`] trait can be used as additional function arguments. The
94//! only difference between using the [`partial`] and [`partial2`] functions compared to passing the extra
95//! arguments via a closure, is that the type of the extra arguments is automatically adjusted to the correct
96//! dual number type used for the automatic differentiation. Note that the following code would not compile:
97//! ```compile_fail
98//! # use num_dual::{DualNum, first_derivative};
99//! # fn foo<D: DualNum<f64> + Copy>(x: D, args: &(D, D)) -> D { todo!() }
100//! fn main() {
101//!     let (val, deriv) = first_derivative(|x| foo(x, &(3.0, 4.0)), 5.0);
102//! }
103//! ```
104//! The code created by [`partial`] essentially translates to:
105//! ```no_run
106//! # use num_dual::{DualNum, first_derivative, Dual, DualStruct};
107//! # fn foo<D: DualNum<f64> + Copy>(x: D, args: &(D, D)) -> D { todo!() }
108//! fn main() {
109//!     let (val, deriv) = first_derivative(|x| foo(x, &(Dual::from_inner(&3.0), Dual::from_inner(&4.0))), 5.0);
110//! }
111//! ```
112//!
113//! ## The [`Gradients`] trait
114//! The functions [`gradient`], [`hessian`], [`partial_hessian`] and [`jacobian`] are generic over the dimensionality
115//! of the variable vector. However, to use the functions in a generic context requires not using the [`Copy`] trait
116//! bound on the dual number type, because the dynamically sized dual numbers can by construction not implement
117//! [`Copy`]. Also, due to frequent heap allocations, the performance of the automatic differentiation could
118//! suffer significantly for dynamically sized dual numbers compared to statically sized dual numbers. The
119//! [`Gradients`] trait is introduced to overcome these limitations.
120//! ```
121//! # use num_dual::{DualNum, Gradients};
122//! # use nalgebra::{OVector, DefaultAllocator, allocator::Allocator, vector, dvector};
123//! # use approx::assert_relative_eq;
124//! fn foo<D: DualNum<f64> + Copy, N: Gradients>(x: OVector<D, N>, n: &D) -> D where DefaultAllocator: Allocator<N> {
125//!     x.dot(&x).sqrt() - n
126//! }
127//!
128//! fn main() {
129//!     let x = vector![1.0, 5.0, 5.0, 7.0];
130//!     let (f, grad) = Gradients::gradient(foo, &x, &10.0);
131//!     assert_eq!(f, 0.0);
132//!     assert_relative_eq!(grad, vector![0.1, 0.5, 0.5, 0.7]);
133//!
134//!     let x = dvector![1.0, 5.0, 5.0, 7.0];
135//!     let (f, grad) = Gradients::gradient(foo, &x, &10.0);
136//!     assert_eq!(f, 0.0);
137//!     assert_relative_eq!(grad, dvector![0.1, 0.5, 0.5, 0.7]);
138//! }
139//! ```
140//! For dynamically sized input arrays, the [`Gradients`] trait evaluates gradients or higher-order derivatives
141//! by iteratively evaluating scalar derivatives. For functions that do not rely on the [`Copy`] trait bound,
142//! only benchmarking can reveal Whether the increased performance through the avoidance of heap allocations
143//! can overcome the overhead of repeated function evaluations, i.e., if [`Gradients`] outperforms directly
144//! calling [`gradient`], [`hessian`], [`partial_hessian`] or [`jacobian`].
145//!
146//! # Derivatives of implicit functions
147//! Implicit differentiation is used to determine the derivative `dy/dx` where the output `y` is only related
148//! implicitly to the input `x` via the equation `f(x,y)=0`. Automatic implicit differentiation generalizes the
149//! idea to determining the output `y` with full derivative information. Note that the first step in calculating
150//! an implicit derivative is always determining the "real" part (i.e., neglecting all derivatives) of the equation
151//! `f(x,y)=0`. The `num-dual` library is focused on automatic differentiation and not nonlinear equation
152//! solving. Therefore, this first step needs to be done with your own custom solutions, or Rust crates for
153//! nonlinear equation solving and optimization like, e.g., [argmin](https://argmin-rs.org/).
154//!
155//! The following example implements a square root for generic dual numbers using implicit differentiation. Of
156//! course, the derivatives of the square root can also be determined explicitly using the chain rule, so the
157//! example serves mostly as illustration. `x.re()` provides the "real" part of the dual number which is a [`f64`]
158//! and therefore, we can use all the functionalities from the std library (including the square root).
159//! ```
160//! # use num_dual::{DualNum, implicit_derivative, first_derivative};
161//! fn implicit_sqrt<D: DualNum<f64> + Copy>(x: D) -> D {
162//!     implicit_derivative(|s, x| s * s - x, x.re().sqrt(), &x)
163//! }
164//!
165//! fn main() {
166//!     // sanity check, not actually calculating any derivative
167//!     assert_eq!(implicit_sqrt(25.0), 5.0);
168//!     
169//!     let (sq, deriv) = first_derivative(implicit_sqrt, 25.0);
170//!     assert_eq!(sq, 5.0);
171//!     // The derivative of sqrt(x) is 1/(2*sqrt(x)) which should evaluate to 0.1
172//!     assert_eq!(deriv, 0.1);
173//! }
174//! ```
175//! The `implicit_sqrt` or any likewise defined function is generic over the dual type `D`
176//! and can, therefore, be used anywhere as a part of an arbitrary complex computation. The functions
177//! [`implicit_derivative_binary`] and [`implicit_derivative_vec`] can be used for implicit functions
178//! with more than one variable.
179//!
180//! For implicit functions that contain complex models and a large number of parameters, the [`ImplicitDerivative`]
181//! interface might come in handy. The idea is to define the implicit function using the [`ImplicitFunction`] trait
182//! and feeding it into the [`ImplicitDerivative`] struct, which internally stores the parameters as dual numbers
183//! and their real parts. The [`ImplicitDerivative`] then provides methods for the evaluation of the real part
184//! of the residual (which can be passed to a nonlinear solver) and the implicit derivative which can be called
185//! after solving for the real part of the solution to reconstruct all the derivatives.
186//! ```
187//! # use num_dual::{ImplicitFunction, DualNum, Dual, ImplicitDerivative};
188//! struct ImplicitSqrt;
189//! impl ImplicitFunction<f64> for ImplicitSqrt {
190//!     type Parameters<D> = D;
191//!     type Variable<D> = D;
192//!     fn residual<D: DualNum<f64> + Copy>(x: D, square: &D) -> D {
193//!         *square - x * x
194//!     }
195//! }
196//!
197//! fn main() {
198//!     let x = Dual::from_re(25.0).derivative();
199//!     let func = ImplicitDerivative::new(ImplicitSqrt, x);
200//!     assert_eq!(func.residual(5.0), 0.0);
201//!     assert_eq!(x.sqrt(), func.implicit_derivative(5.0));
202//! }
203//! ```
204//!
205//! ## Combination with nonlinear solver libraries
206//! As mentioned previously, this crate does not contain any algorithms for nonlinear optimization or root finding.
207//! However, combining the capabilities of automatic differentiation with nonlinear solving can be very fruitful.
208//! Most importantly, the calculation of Jacobians or Hessians can be completely automated, if the model can be
209//! expressed within the functionalities of the [`DualNum`] trait. On top of that implicit derivatives can be of
210//! interest, if derivatives of the result of the optimization itself are relevant (e.g., in a bilevel
211//! optimization). The synergy is exploited in the [`ipopt-ad`](https://github.com/prehner/ipopt-ad) crate that
212//! turns the NLP solver [IPOPT](https://github.com/coin-or/Ipopt) into a black-box optimization algorithm (i.e.,
213//! it only requires a function that returns the values of the optimization variable and constraints), without
214//! any repercussions regarding the robustness or speed of convergence of the solver.
215//!
216//! If you are developing nonlinear optimization algorithms in Rust, feel free to reach out to us. We are happy to
217//! discuss how to enhance your algorithms with the automatic differentiation capabilities of this crate.
218
219#![warn(clippy::all)]
220#![warn(clippy::allow_attributes)]
221
222use nalgebra::allocator::Allocator;
223use nalgebra::{DefaultAllocator, Dim, OMatrix, Scalar};
224#[cfg(feature = "ndarray")]
225use ndarray::ScalarOperand;
226use num_traits::{Float, FloatConst, FromPrimitive, Inv, NumAssignOps, NumOps, Signed};
227use std::collections::HashMap;
228use std::fmt;
229use std::hash::Hash;
230use std::iter::{Product, Sum};
231
232#[macro_use]
233mod macros;
234#[macro_use]
235mod impl_derivatives;
236
237mod bessel;
238mod datatypes;
239mod explicit;
240mod implicit;
241pub use bessel::BesselDual;
242pub use datatypes::derivative::Derivative;
243pub use datatypes::dual::{Dual, Dual32, Dual64};
244pub use datatypes::dual_vec::{
245    DualDVec32, DualDVec64, DualSVec, DualSVec32, DualSVec64, DualVec, DualVec32, DualVec64,
246};
247pub use datatypes::dual2::{Dual2, Dual2_32, Dual2_64};
248pub use datatypes::dual2_vec::{
249    Dual2DVec, Dual2DVec32, Dual2DVec64, Dual2SVec, Dual2SVec32, Dual2SVec64, Dual2Vec, Dual2Vec32,
250    Dual2Vec64,
251};
252pub use datatypes::dual3::{Dual3, Dual3_32, Dual3_64};
253pub use datatypes::hyperdual::{HyperDual, HyperDual32, HyperDual64};
254pub use datatypes::hyperdual_vec::{
255    HyperDualDVec32, HyperDualDVec64, HyperDualSVec32, HyperDualSVec64, HyperDualVec,
256    HyperDualVec32, HyperDualVec64,
257};
258pub use datatypes::hyperhyperdual::{HyperHyperDual, HyperHyperDual32, HyperHyperDual64};
259pub use datatypes::real::Real;
260pub use explicit::{
261    Gradients, first_derivative, gradient, hessian, jacobian, partial, partial_hessian, partial2,
262    second_derivative, second_partial_derivative, third_derivative, third_partial_derivative,
263    third_partial_derivative_vec, zeroth_derivative,
264};
265pub use implicit::{
266    ImplicitDerivative, ImplicitFunction, implicit_derivative, implicit_derivative_binary,
267    implicit_derivative_sp, implicit_derivative_vec,
268};
269
270pub mod linalg;
271
272#[cfg(feature = "python")]
273pub mod python;
274
275#[cfg(feature = "python_macro")]
276mod python_macro;
277
278/// A generalized (hyper) dual number.
279#[cfg(feature = "ndarray")]
280pub trait DualNum<F>:
281    NumOps
282    + for<'r> NumOps<&'r Self>
283    + Signed
284    + NumOps<F>
285    + NumAssignOps
286    + NumAssignOps<F>
287    + Clone
288    + Inv<Output = Self>
289    + Sum
290    + Product
291    + FromPrimitive
292    + From<F>
293    + DualStruct<Self, F, Real = F>
294    + Mappable<Self>
295    + fmt::Display
296    + PartialEq
297    + fmt::Debug
298    + ScalarOperand
299    + 'static
300{
301    /// Highest derivative that can be calculated with this struct
302    const NDERIV: usize;
303
304    /// Reciprocal (inverse) of a number `1/x`
305    fn recip(&self) -> Self;
306
307    /// Power with integer exponent `x^n`
308    fn powi(&self, n: i32) -> Self;
309
310    /// Power with real exponent `x^n`
311    fn powf(&self, n: F) -> Self;
312
313    /// Square root
314    fn sqrt(&self) -> Self;
315
316    /// Cubic root
317    fn cbrt(&self) -> Self;
318
319    /// Exponential `e^x`
320    fn exp(&self) -> Self;
321
322    /// Exponential with base 2 `2^x`
323    fn exp2(&self) -> Self;
324
325    /// Exponential minus 1 `e^x-1`
326    fn exp_m1(&self) -> Self;
327
328    /// Natural logarithm
329    fn ln(&self) -> Self;
330
331    /// Logarithm with arbitrary base
332    fn log(&self, base: F) -> Self;
333
334    /// Logarithm with base 2
335    fn log2(&self) -> Self;
336
337    /// Logarithm with base 10
338    fn log10(&self) -> Self;
339
340    /// Logarithm on x plus one `ln(1+x)`
341    fn ln_1p(&self) -> Self;
342
343    /// Sine
344    fn sin(&self) -> Self;
345
346    /// Cosine
347    fn cos(&self) -> Self;
348
349    /// Tangent
350    fn tan(&self) -> Self;
351
352    /// Calculate sine and cosine simultaneously
353    fn sin_cos(&self) -> (Self, Self);
354
355    /// Arcsine
356    fn asin(&self) -> Self;
357
358    /// Arccosine
359    fn acos(&self) -> Self;
360
361    /// Arctangent
362    fn atan(&self) -> Self;
363
364    /// Arctangent
365    fn atan2(&self, other: Self) -> Self;
366
367    /// Hyperbolic sine
368    fn sinh(&self) -> Self;
369
370    /// Hyperbolic cosine
371    fn cosh(&self) -> Self;
372
373    /// Hyperbolic tangent
374    fn tanh(&self) -> Self;
375
376    /// Area hyperbolic sine
377    fn asinh(&self) -> Self;
378
379    /// Area hyperbolic cosine
380    fn acosh(&self) -> Self;
381
382    /// Area hyperbolic tangent
383    fn atanh(&self) -> Self;
384
385    /// 0th order spherical Bessel function of the first kind
386    fn sph_j0(&self) -> Self;
387
388    /// 1st order spherical Bessel function of the first kind
389    fn sph_j1(&self) -> Self;
390
391    /// 2nd order spherical Bessel function of the first kind
392    fn sph_j2(&self) -> Self;
393
394    /// Fused multiply-add
395    #[inline]
396    fn mul_add(&self, a: Self, b: Self) -> Self {
397        self.clone() * a + b
398    }
399
400    /// Power with dual exponent `x^n`
401    #[inline]
402    fn powd(&self, exp: Self) -> Self {
403        (self.ln() * exp).exp()
404    }
405}
406
407/// A generalized (hyper) dual number.
408#[cfg(not(feature = "ndarray"))]
409pub trait DualNum<F>:
410    NumOps
411    + for<'r> NumOps<&'r Self>
412    + Signed
413    + NumOps<F>
414    + NumAssignOps
415    + NumAssignOps<F>
416    + Clone
417    + Inv<Output = Self>
418    + Sum
419    + Product
420    + FromPrimitive
421    + From<F>
422    + DualStruct<Self, F, Real = F>
423    + Mappable<Self>
424    + fmt::Display
425    + PartialEq
426    + fmt::Debug
427    + 'static
428{
429    /// Highest derivative that can be calculated with this struct
430    const NDERIV: usize;
431
432    /// Reciprocal (inverse) of a number `1/x`
433    fn recip(&self) -> Self;
434
435    /// Power with integer exponent `x^n`
436    fn powi(&self, n: i32) -> Self;
437
438    /// Power with real exponent `x^n`
439    fn powf(&self, n: F) -> Self;
440
441    /// Square root
442    fn sqrt(&self) -> Self;
443
444    /// Cubic root
445    fn cbrt(&self) -> Self;
446
447    /// Exponential `e^x`
448    fn exp(&self) -> Self;
449
450    /// Exponential with base 2 `2^x`
451    fn exp2(&self) -> Self;
452
453    /// Exponential minus 1 `e^x-1`
454    fn exp_m1(&self) -> Self;
455
456    /// Natural logarithm
457    fn ln(&self) -> Self;
458
459    /// Logarithm with arbitrary base
460    fn log(&self, base: F) -> Self;
461
462    /// Logarithm with base 2
463    fn log2(&self) -> Self;
464
465    /// Logarithm with base 10
466    fn log10(&self) -> Self;
467
468    /// Logarithm on x plus one `ln(1+x)`
469    fn ln_1p(&self) -> Self;
470
471    /// Sine
472    fn sin(&self) -> Self;
473
474    /// Cosine
475    fn cos(&self) -> Self;
476
477    /// Tangent
478    fn tan(&self) -> Self;
479
480    /// Calculate sine and cosine simultaneously
481    fn sin_cos(&self) -> (Self, Self);
482
483    /// Arcsine
484    fn asin(&self) -> Self;
485
486    /// Arccosine
487    fn acos(&self) -> Self;
488
489    /// Arctangent
490    fn atan(&self) -> Self;
491
492    /// Arctangent
493    fn atan2(&self, other: Self) -> Self;
494
495    /// Hyperbolic sine
496    fn sinh(&self) -> Self;
497
498    /// Hyperbolic cosine
499    fn cosh(&self) -> Self;
500
501    /// Hyperbolic tangent
502    fn tanh(&self) -> Self;
503
504    /// Area hyperbolic sine
505    fn asinh(&self) -> Self;
506
507    /// Area hyperbolic cosine
508    fn acosh(&self) -> Self;
509
510    /// Area hyperbolic tangent
511    fn atanh(&self) -> Self;
512
513    /// 0th order spherical Bessel function of the first kind
514    fn sph_j0(&self) -> Self;
515
516    /// 1st order spherical Bessel function of the first kind
517    fn sph_j1(&self) -> Self;
518
519    /// 2nd order spherical Bessel function of the first kind
520    fn sph_j2(&self) -> Self;
521
522    /// Fused multiply-add
523    #[inline]
524    fn mul_add(&self, a: Self, b: Self) -> Self {
525        self.clone() * a + b
526    }
527
528    /// Power with dual exponent `x^n`
529    #[inline]
530    fn powd(&self, exp: Self) -> Self {
531        (self.ln() * exp).exp()
532    }
533}
534
535/// The underlying data type of individual derivatives. Usually f32 or f64.
536pub trait DualNumFloat:
537    Float + FloatConst + FromPrimitive + Signed + fmt::Display + fmt::Debug + Sync + Send + 'static
538{
539}
540impl<T> DualNumFloat for T where
541    T: Float
542        + FloatConst
543        + FromPrimitive
544        + Signed
545        + fmt::Display
546        + fmt::Debug
547        + Sync
548        + Send
549        + 'static
550{
551}
552
553macro_rules! impl_dual_num_float {
554    ($float:ty) => {
555        impl DualNum<$float> for $float {
556            const NDERIV: usize = 0;
557
558            fn mul_add(&self, a: Self, b: Self) -> Self {
559                <$float>::mul_add(*self, a, b)
560            }
561            fn recip(&self) -> Self {
562                <$float>::recip(*self)
563            }
564            fn powi(&self, n: i32) -> Self {
565                <$float>::powi(*self, n)
566            }
567            fn powf(&self, n: Self) -> Self {
568                <$float>::powf(*self, n)
569            }
570            fn powd(&self, n: Self) -> Self {
571                <$float>::powf(*self, n)
572            }
573            fn sqrt(&self) -> Self {
574                <$float>::sqrt(*self)
575            }
576            fn exp(&self) -> Self {
577                <$float>::exp(*self)
578            }
579            fn exp2(&self) -> Self {
580                <$float>::exp2(*self)
581            }
582            fn ln(&self) -> Self {
583                <$float>::ln(*self)
584            }
585            fn log(&self, base: Self) -> Self {
586                <$float>::log(*self, base)
587            }
588            fn log2(&self) -> Self {
589                <$float>::log2(*self)
590            }
591            fn log10(&self) -> Self {
592                <$float>::log10(*self)
593            }
594            fn cbrt(&self) -> Self {
595                <$float>::cbrt(*self)
596            }
597            fn sin(&self) -> Self {
598                <$float>::sin(*self)
599            }
600            fn cos(&self) -> Self {
601                <$float>::cos(*self)
602            }
603            fn tan(&self) -> Self {
604                <$float>::tan(*self)
605            }
606            fn asin(&self) -> Self {
607                <$float>::asin(*self)
608            }
609            fn acos(&self) -> Self {
610                <$float>::acos(*self)
611            }
612            fn atan(&self) -> Self {
613                <$float>::atan(*self)
614            }
615            fn atan2(&self, other: $float) -> Self {
616                <$float>::atan2(*self, other)
617            }
618            fn sin_cos(&self) -> (Self, Self) {
619                <$float>::sin_cos(*self)
620            }
621            fn exp_m1(&self) -> Self {
622                <$float>::exp_m1(*self)
623            }
624            fn ln_1p(&self) -> Self {
625                <$float>::ln_1p(*self)
626            }
627            fn sinh(&self) -> Self {
628                <$float>::sinh(*self)
629            }
630            fn cosh(&self) -> Self {
631                <$float>::cosh(*self)
632            }
633            fn tanh(&self) -> Self {
634                <$float>::tanh(*self)
635            }
636            fn asinh(&self) -> Self {
637                <$float>::asinh(*self)
638            }
639            fn acosh(&self) -> Self {
640                <$float>::acosh(*self)
641            }
642            fn atanh(&self) -> Self {
643                <$float>::atanh(*self)
644            }
645            fn sph_j0(&self) -> Self {
646                if self.abs() < <$float>::EPSILON {
647                    1.0 - self * self / 6.0
648                } else {
649                    self.sin() / self
650                }
651            }
652            fn sph_j1(&self) -> Self {
653                if self.abs() < <$float>::EPSILON {
654                    self / 3.0
655                } else {
656                    let sc = self.sin_cos();
657                    let rec = self.recip();
658                    (sc.0 * rec - sc.1) * rec
659                }
660            }
661            fn sph_j2(&self) -> Self {
662                if self.abs() < <$float>::EPSILON {
663                    self * self / 15.0
664                } else {
665                    let sc = self.sin_cos();
666                    let s2 = self * self;
667                    ((3.0 - s2) * sc.0 - 3.0 * self * sc.1) / (self * s2)
668                }
669            }
670        }
671    };
672}
673
674impl_dual_num_float!(f32);
675impl_dual_num_float!(f64);
676
677/// A struct that contains dual numbers. Needed for arbitrary arguments in [ImplicitFunction].
678///
679/// The trait is implemented for all dual types themselves, and common data types (tuple, vec,
680/// array, ...) and can be implemented for custom data types to achieve full flexibility.
681pub trait DualStruct<D, F> {
682    type Real;
683    type Inner;
684    fn re(&self) -> Self::Real;
685    fn from_inner(inner: &Self::Inner) -> Self;
686}
687
688/// Trait for structs used as an output of functions for which derivatives are calculated.
689///
690/// The main intention is to generalize the calculation of derivatives to fallible functions, but
691/// other use cases might also appear in the future.
692pub trait Mappable<D> {
693    type Output<O>;
694    fn map_dual<M: Fn(D) -> O, O>(self, f: M) -> Self::Output<O>;
695}
696
697impl<D, F> DualStruct<D, F> for () {
698    type Real = ();
699    type Inner = ();
700    fn re(&self) {}
701    fn from_inner(_: &Self::Inner) -> Self {}
702}
703
704impl<D> Mappable<D> for () {
705    type Output<O> = ();
706    fn map_dual<M: FnOnce(D) -> O, O>(self, _: M) {}
707}
708
709impl DualStruct<f32, f32> for f32 {
710    type Real = f32;
711    type Inner = f32;
712    fn re(&self) -> f32 {
713        *self
714    }
715    fn from_inner(inner: &Self::Inner) -> Self {
716        *inner
717    }
718}
719
720impl Mappable<f32> for f32 {
721    type Output<O> = O;
722    fn map_dual<M: FnOnce(f32) -> O, O>(self, f: M) -> Self::Output<O> {
723        f(self)
724    }
725}
726
727impl DualStruct<f64, f64> for f64 {
728    type Real = f64;
729    type Inner = f64;
730    fn re(&self) -> f64 {
731        *self
732    }
733    fn from_inner(inner: &Self::Inner) -> Self {
734        *inner
735    }
736}
737
738impl Mappable<f64> for f64 {
739    type Output<O> = O;
740    fn map_dual<M: FnOnce(f64) -> O, O>(self, f: M) -> Self::Output<O> {
741        f(self)
742    }
743}
744
745impl<D, F, T1: DualStruct<D, F>, T2: DualStruct<D, F>> DualStruct<D, F> for (T1, T2) {
746    type Real = (T1::Real, T2::Real);
747    type Inner = (T1::Inner, T2::Inner);
748    fn re(&self) -> Self::Real {
749        let (s1, s2) = self;
750        (s1.re(), s2.re())
751    }
752    fn from_inner(re: &Self::Inner) -> Self {
753        let (r1, r2) = re;
754        (T1::from_inner(r1), T2::from_inner(r2))
755    }
756}
757
758impl<D, T1: Mappable<D>, T2: Mappable<D>> Mappable<D> for (T1, T2) {
759    type Output<O> = (T1::Output<O>, T2::Output<O>);
760    fn map_dual<M: Fn(D) -> O, O>(self, f: M) -> Self::Output<O> {
761        let (s1, s2) = self;
762        (s1.map_dual(&f), s2.map_dual(&f))
763    }
764}
765
766impl<D, F, T1: DualStruct<D, F>, T2: DualStruct<D, F>, T3: DualStruct<D, F>> DualStruct<D, F>
767    for (T1, T2, T3)
768{
769    type Real = (T1::Real, T2::Real, T3::Real);
770    type Inner = (T1::Inner, T2::Inner, T3::Inner);
771    fn re(&self) -> Self::Real {
772        let (s1, s2, s3) = self;
773        (s1.re(), s2.re(), s3.re())
774    }
775    fn from_inner(inner: &Self::Inner) -> Self {
776        let (r1, r2, r3) = inner;
777        (T1::from_inner(r1), T2::from_inner(r2), T3::from_inner(r3))
778    }
779}
780
781impl<D, T1: Mappable<D>, T2: Mappable<D>, T3: Mappable<D>> Mappable<D> for (T1, T2, T3) {
782    type Output<O> = (T1::Output<O>, T2::Output<O>, T3::Output<O>);
783    fn map_dual<M: Fn(D) -> O, O>(self, f: M) -> Self::Output<O> {
784        let (s1, s2, s3) = self;
785        (s1.map_dual(&f), s2.map_dual(&f), s3.map_dual(&f))
786    }
787}
788
789impl<D, F, T1: DualStruct<D, F>, T2: DualStruct<D, F>, T3: DualStruct<D, F>, T4: DualStruct<D, F>>
790    DualStruct<D, F> for (T1, T2, T3, T4)
791{
792    type Real = (T1::Real, T2::Real, T3::Real, T4::Real);
793    type Inner = (T1::Inner, T2::Inner, T3::Inner, T4::Inner);
794    fn re(&self) -> Self::Real {
795        let (s1, s2, s3, s4) = self;
796        (s1.re(), s2.re(), s3.re(), s4.re())
797    }
798    fn from_inner(inner: &Self::Inner) -> Self {
799        let (r1, r2, r3, r4) = inner;
800        (
801            T1::from_inner(r1),
802            T2::from_inner(r2),
803            T3::from_inner(r3),
804            T4::from_inner(r4),
805        )
806    }
807}
808
809impl<D, T1: Mappable<D>, T2: Mappable<D>, T3: Mappable<D>, T4: Mappable<D>> Mappable<D>
810    for (T1, T2, T3, T4)
811{
812    type Output<O> = (T1::Output<O>, T2::Output<O>, T3::Output<O>, T4::Output<O>);
813    fn map_dual<M: Fn(D) -> O, O>(self, f: M) -> Self::Output<O> {
814        let (s1, s2, s3, s4) = self;
815        (
816            s1.map_dual(&f),
817            s2.map_dual(&f),
818            s3.map_dual(&f),
819            s4.map_dual(&f),
820        )
821    }
822}
823
824impl<
825    D,
826    F,
827    T1: DualStruct<D, F>,
828    T2: DualStruct<D, F>,
829    T3: DualStruct<D, F>,
830    T4: DualStruct<D, F>,
831    T5: DualStruct<D, F>,
832> DualStruct<D, F> for (T1, T2, T3, T4, T5)
833{
834    type Real = (T1::Real, T2::Real, T3::Real, T4::Real, T5::Real);
835    type Inner = (T1::Inner, T2::Inner, T3::Inner, T4::Inner, T5::Inner);
836    fn re(&self) -> Self::Real {
837        let (s1, s2, s3, s4, s5) = self;
838        (s1.re(), s2.re(), s3.re(), s4.re(), s5.re())
839    }
840    fn from_inner(inner: &Self::Inner) -> Self {
841        let (r1, r2, r3, r4, r5) = inner;
842        (
843            T1::from_inner(r1),
844            T2::from_inner(r2),
845            T3::from_inner(r3),
846            T4::from_inner(r4),
847            T5::from_inner(r5),
848        )
849    }
850}
851
852impl<D, T1: Mappable<D>, T2: Mappable<D>, T3: Mappable<D>, T4: Mappable<D>, T5: Mappable<D>>
853    Mappable<D> for (T1, T2, T3, T4, T5)
854{
855    type Output<O> = (
856        T1::Output<O>,
857        T2::Output<O>,
858        T3::Output<O>,
859        T4::Output<O>,
860        T5::Output<O>,
861    );
862    fn map_dual<M: Fn(D) -> O, O>(self, f: M) -> Self::Output<O> {
863        let (s1, s2, s3, s4, s5) = self;
864        (
865            s1.map_dual(&f),
866            s2.map_dual(&f),
867            s3.map_dual(&f),
868            s4.map_dual(&f),
869            s5.map_dual(&f),
870        )
871    }
872}
873
874impl<D, F, T: DualStruct<D, F>, const N: usize> DualStruct<D, F> for [T; N] {
875    type Real = [T::Real; N];
876    type Inner = [T::Inner; N];
877    fn re(&self) -> Self::Real {
878        self.each_ref().map(|x| x.re())
879    }
880    fn from_inner(re: &Self::Inner) -> Self {
881        re.each_ref().map(T::from_inner)
882    }
883}
884
885impl<D, T: Mappable<D>, const N: usize> Mappable<D> for [T; N] {
886    type Output<O> = [T::Output<O>; N];
887    fn map_dual<M: Fn(D) -> O, O>(self, f: M) -> Self::Output<O> {
888        self.map(|x| x.map_dual(&f))
889    }
890}
891
892impl<D, F, T: DualStruct<D, F>> DualStruct<D, F> for Option<T> {
893    type Real = Option<T::Real>;
894    type Inner = Option<T::Inner>;
895    fn re(&self) -> Self::Real {
896        self.as_ref().map(|x| x.re())
897    }
898    fn from_inner(inner: &Self::Inner) -> Self {
899        inner.as_ref().map(|x| T::from_inner(x))
900    }
901}
902
903impl<D, T: Mappable<D>> Mappable<D> for Option<T> {
904    type Output<O> = Option<T::Output<O>>;
905    fn map_dual<M: Fn(D) -> O, O>(self, f: M) -> Self::Output<O> {
906        self.map(|x| x.map_dual(f))
907    }
908}
909
910impl<D, T: Mappable<D>, E> Mappable<D> for Result<T, E> {
911    type Output<O> = Result<T::Output<O>, E>;
912    fn map_dual<M: Fn(D) -> O, O>(self, f: M) -> Self::Output<O> {
913        self.map(|x| x.map_dual(f))
914    }
915}
916
917impl<D, F, T: DualStruct<D, F>> DualStruct<D, F> for Vec<T> {
918    type Real = Vec<T::Real>;
919    type Inner = Vec<T::Inner>;
920    fn re(&self) -> Self::Real {
921        self.iter().map(|x| x.re()).collect()
922    }
923    fn from_inner(inner: &Self::Inner) -> Self {
924        inner.iter().map(|x| T::from_inner(x)).collect()
925    }
926}
927
928impl<D, T: Mappable<D>> Mappable<D> for Vec<T> {
929    type Output<O> = Vec<T::Output<O>>;
930    fn map_dual<M: Fn(D) -> O, O>(self, f: M) -> Self::Output<O> {
931        self.into_iter().map(|x| x.map_dual(&f)).collect()
932    }
933}
934
935impl<D, F, T: DualStruct<D, F>, K: Clone + Eq + Hash> DualStruct<D, F> for HashMap<K, T> {
936    type Real = HashMap<K, T::Real>;
937    type Inner = HashMap<K, T::Inner>;
938    fn re(&self) -> Self::Real {
939        self.iter().map(|(k, x)| (k.clone(), x.re())).collect()
940    }
941    fn from_inner(inner: &Self::Inner) -> Self {
942        inner
943            .iter()
944            .map(|(k, x)| (k.clone(), T::from_inner(x)))
945            .collect()
946    }
947}
948
949impl<D, T: Mappable<D>, K: Eq + Hash> Mappable<D> for HashMap<K, T> {
950    type Output<O> = HashMap<K, T::Output<O>>;
951    fn map_dual<M: Fn(D) -> O, O>(self, f: M) -> Self::Output<O> {
952        self.into_iter().map(|(k, x)| (k, x.map_dual(&f))).collect()
953    }
954}
955
956impl<D: DualNum<F>, F: DualNumFloat, R: Dim, C: Dim> DualStruct<D, F> for OMatrix<D, R, C>
957where
958    DefaultAllocator: Allocator<R, C>,
959    D::Inner: DualNum<F>,
960{
961    type Real = OMatrix<F, R, C>;
962    type Inner = OMatrix<D::Inner, R, C>;
963    fn re(&self) -> Self::Real {
964        self.map(|x| x.re())
965    }
966    fn from_inner(inner: &Self::Inner) -> Self {
967        inner.map(|x| D::from_inner(&x))
968    }
969}
970
971impl<D: Scalar, R: Dim, C: Dim> Mappable<Self> for OMatrix<D, R, C>
972where
973    DefaultAllocator: Allocator<R, C>,
974{
975    type Output<O> = O;
976    fn map_dual<M: Fn(Self) -> O, O>(self, f: M) -> O {
977        f(self)
978    }
979}