1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
use std::{
io,
process::{Child, Command},
};
#[cfg(unix)]
use std::{
io::IsTerminal,
sync::{
atomic::{AtomicU32, Ordering},
Arc,
},
};
/// A simple wrapper for [`std::process::Child`]
///
/// It can only be created by [`ForegroundChild::spawn`].
///
/// # Spawn behavior
/// ## Unix
///
/// For interactive shells, the spawned child process will get its own process group id,
/// and it will be put in the foreground (by making stdin belong to the child's process group).
/// On drop, the calling process's group will become the foreground process group once again.
///
/// For non-interactive mode, processes are spawned normally without any foreground process handling.
///
/// ## Other systems
///
/// It does nothing special on non-unix systems, so `spawn` is the same as [`std::process::Command::spawn`].
pub struct ForegroundChild {
inner: Child,
#[cfg(unix)]
pipeline_state: Option<Arc<(AtomicU32, AtomicU32)>>,
}
impl ForegroundChild {
#[cfg(not(unix))]
pub fn spawn(mut command: Command) -> io::Result<Self> {
command.spawn().map(|child| Self { inner: child })
}
#[cfg(unix)]
pub fn spawn(
mut command: Command,
interactive: bool,
pipeline_state: &Arc<(AtomicU32, AtomicU32)>,
) -> io::Result<Self> {
if interactive && io::stdin().is_terminal() {
let (pgrp, pcnt) = pipeline_state.as_ref();
let existing_pgrp = pgrp.load(Ordering::SeqCst);
foreground_pgroup::prepare_command(&mut command, existing_pgrp);
command
.spawn()
.map(|child| {
foreground_pgroup::set(&child, existing_pgrp);
let _ = pcnt.fetch_add(1, Ordering::SeqCst);
if existing_pgrp == 0 {
pgrp.store(child.id(), Ordering::SeqCst);
}
Self {
inner: child,
pipeline_state: Some(pipeline_state.clone()),
}
})
.map_err(|e| {
foreground_pgroup::reset();
e
})
} else {
command.spawn().map(|child| Self {
inner: child,
pipeline_state: None,
})
}
}
}
impl AsMut<Child> for ForegroundChild {
fn as_mut(&mut self) -> &mut Child {
&mut self.inner
}
}
#[cfg(unix)]
impl Drop for ForegroundChild {
fn drop(&mut self) {
if let Some((pgrp, pcnt)) = self.pipeline_state.as_deref() {
if pcnt.fetch_sub(1, Ordering::SeqCst) == 1 {
pgrp.store(0, Ordering::SeqCst);
foreground_pgroup::reset()
}
}
}
}
// It's a simpler version of fish shell's external process handling.
#[cfg(unix)]
mod foreground_pgroup {
use nix::{
libc,
sys::signal::{sigaction, SaFlags, SigAction, SigHandler, SigSet, Signal},
unistd::{self, Pid},
};
use std::{
os::unix::prelude::CommandExt,
process::{Child, Command},
};
pub fn prepare_command(external_command: &mut Command, existing_pgrp: u32) {
unsafe {
// Safety:
// POSIX only allows async-signal-safe functions to be called.
// `sigaction` and `getpid` are async-signal-safe according to:
// https://manpages.ubuntu.com/manpages/bionic/man7/signal-safety.7.html
// Also, `set_foreground_pid` is async-signal-safe.
external_command.pre_exec(move || {
// When this callback is run, std::process has already:
// - reset SIGPIPE to SIG_DFL
// According to glibc's job control manual:
// https://www.gnu.org/software/libc/manual/html_node/Launching-Jobs.html
// This has to be done *both* in the parent and here in the child due to race conditions.
set_foreground_pid(Pid::this(), existing_pgrp);
// Reset signal handlers for child, sync with `terminal.rs`
let default = SigAction::new(SigHandler::SigDfl, SaFlags::empty(), SigSet::empty());
// SIGINT has special handling
let _ = sigaction(Signal::SIGQUIT, &default);
// We don't support background jobs, so keep some signals blocked for now
// let _ = sigaction(Signal::SIGTSTP, &default);
// let _ = sigaction(Signal::SIGTTIN, &default);
// let _ = sigaction(Signal::SIGTTOU, &default);
let _ = sigaction(Signal::SIGTERM, &default);
Ok(())
});
}
}
pub fn set(process: &Child, existing_pgrp: u32) {
set_foreground_pid(Pid::from_raw(process.id() as i32), existing_pgrp);
}
fn set_foreground_pid(pid: Pid, existing_pgrp: u32) {
// Safety: needs to be async-signal-safe.
// `setpgid` and `tcsetpgrp` are async-signal-safe.
// `existing_pgrp` is 0 when we don't have an existing foreground process in the pipeline.
// A pgrp of 0 means the calling process's pid for `setpgid`. But not for `tcsetpgrp`.
let pgrp = if existing_pgrp == 0 {
pid
} else {
Pid::from_raw(existing_pgrp as i32)
};
let _ = unistd::setpgid(pid, pgrp);
let _ = unistd::tcsetpgrp(libc::STDIN_FILENO, pgrp);
}
/// Reset the foreground process group to the shell
pub fn reset() {
if let Err(e) = unistd::tcsetpgrp(libc::STDIN_FILENO, unistd::getpgrp()) {
eprintln!("ERROR: reset foreground id failed, tcsetpgrp result: {e:?}");
}
}
}