nu_system/foreground.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369
#[cfg(unix)]
use std::io::prelude::*;
use std::{
io,
process::{Child, Command},
sync::{atomic::AtomicU32, Arc},
};
use crate::ExitStatus;
#[cfg(unix)]
use std::{io::IsTerminal, sync::atomic::Ordering};
#[cfg(unix)]
pub use foreground_pgroup::stdin_fd;
#[cfg(unix)]
use nix::{sys::signal, sys::wait, unistd::Pid};
/// A simple wrapper for [`std::process::Child`]
///
/// It can only be created by [`ForegroundChild::spawn`].
///
/// # Spawn behavior
/// ## Unix
///
/// For interactive shells, the spawned child process will get its own process group id,
/// and it will be put in the foreground (by making stdin belong to the child's process group).
/// On drop, the calling process's group will become the foreground process group once again.
///
/// For non-interactive mode, processes are spawned normally without any foreground process handling.
///
/// ## Other systems
///
/// It does nothing special on non-unix systems, so `spawn` is the same as [`std::process::Command::spawn`].
pub struct ForegroundChild {
inner: Child,
#[cfg(unix)]
pipeline_state: Option<Arc<(AtomicU32, AtomicU32)>>,
}
impl ForegroundChild {
#[cfg(not(unix))]
pub fn spawn(mut command: Command) -> io::Result<Self> {
command.spawn().map(|child| Self { inner: child })
}
#[cfg(unix)]
pub fn spawn(
mut command: Command,
interactive: bool,
pipeline_state: &Arc<(AtomicU32, AtomicU32)>,
) -> io::Result<Self> {
if interactive && io::stdin().is_terminal() {
let (pgrp, pcnt) = pipeline_state.as_ref();
let existing_pgrp = pgrp.load(Ordering::SeqCst);
foreground_pgroup::prepare_command(&mut command, existing_pgrp);
command
.spawn()
.map(|child| {
foreground_pgroup::set(&child, existing_pgrp);
let _ = pcnt.fetch_add(1, Ordering::SeqCst);
if existing_pgrp == 0 {
pgrp.store(child.id(), Ordering::SeqCst);
}
Self {
inner: child,
pipeline_state: Some(pipeline_state.clone()),
}
})
.inspect_err(|_e| {
foreground_pgroup::reset();
})
} else {
command.spawn().map(|child| Self {
inner: child,
pipeline_state: None,
})
}
}
pub fn wait(&mut self) -> io::Result<ExitStatus> {
#[cfg(unix)]
{
// the child may be stopped multiple times, we loop until it exits
loop {
let child_pid = Pid::from_raw(self.inner.id() as i32);
let status = wait::waitpid(child_pid, Some(wait::WaitPidFlag::WUNTRACED));
match status {
Err(e) => {
drop(self.inner.stdin.take());
return Err(e.into());
}
Ok(wait::WaitStatus::Exited(_, status)) => {
drop(self.inner.stdin.take());
return Ok(ExitStatus::Exited(status));
}
Ok(wait::WaitStatus::Signaled(_, signal, core_dumped)) => {
drop(self.inner.stdin.take());
return Ok(ExitStatus::Signaled {
signal: signal as i32,
core_dumped,
});
}
Ok(wait::WaitStatus::Stopped(_, _)) => {
println!("nushell currently does not support background jobs");
// acquire terminal in order to be able to read from stdin
foreground_pgroup::reset();
let mut stdin = io::stdin();
let mut stdout = io::stdout();
write!(stdout, "press any key to continue")?;
stdout.flush()?;
stdin.read_exact(&mut [0u8])?;
// bring child's pg back into foreground and continue it
if let Some(state) = self.pipeline_state.as_ref() {
let existing_pgrp = state.0.load(Ordering::SeqCst);
foreground_pgroup::set(&self.inner, existing_pgrp);
}
signal::killpg(child_pid, signal::SIGCONT)?;
}
Ok(_) => {
// keep waiting
}
};
}
}
#[cfg(not(unix))]
self.as_mut().wait().map(Into::into)
}
}
impl AsMut<Child> for ForegroundChild {
fn as_mut(&mut self) -> &mut Child {
&mut self.inner
}
}
#[cfg(unix)]
impl Drop for ForegroundChild {
fn drop(&mut self) {
if let Some((pgrp, pcnt)) = self.pipeline_state.as_deref() {
if pcnt.fetch_sub(1, Ordering::SeqCst) == 1 {
pgrp.store(0, Ordering::SeqCst);
foreground_pgroup::reset()
}
}
}
}
/// Keeps a specific already existing process in the foreground as long as the [`ForegroundGuard`].
/// If the process needs to be spawned in the foreground, use [`ForegroundChild`] instead. This is
/// used to temporarily bring plugin processes into the foreground.
///
/// # OS-specific behavior
/// ## Unix
///
/// If there is already a foreground external process running, spawned with [`ForegroundChild`],
/// this expects the process ID to remain in the process group created by the [`ForegroundChild`]
/// for the lifetime of the guard, and keeps the terminal controlling process group set to that.
/// If there is no foreground external process running, this sets the foreground process group to
/// the plugin's process ID. The process group that is expected can be retrieved with
/// [`.pgrp()`](Self::pgrp) if different from the plugin process ID.
///
/// ## Other systems
///
/// It does nothing special on non-unix systems.
#[derive(Debug)]
pub struct ForegroundGuard {
#[cfg(unix)]
pgrp: Option<u32>,
#[cfg(unix)]
pipeline_state: Arc<(AtomicU32, AtomicU32)>,
}
impl ForegroundGuard {
/// Move the given process to the foreground.
#[cfg(unix)]
pub fn new(
pid: u32,
pipeline_state: &Arc<(AtomicU32, AtomicU32)>,
) -> std::io::Result<ForegroundGuard> {
use nix::unistd::{self, Pid};
let pid_nix = Pid::from_raw(pid as i32);
let (pgrp, pcnt) = pipeline_state.as_ref();
// Might have to retry due to race conditions on the atomics
loop {
// Try to give control to the child, if there isn't currently a foreground group
if pgrp
.compare_exchange(0, pid, Ordering::SeqCst, Ordering::SeqCst)
.is_ok()
{
let _ = pcnt.fetch_add(1, Ordering::SeqCst);
// We don't need the child to change process group. Make the guard now so that if there
// is an error, it will be cleaned up
let guard = ForegroundGuard {
pgrp: None,
pipeline_state: pipeline_state.clone(),
};
log::trace!("Giving control of the terminal to the plugin group, pid={pid}");
// Set the terminal controlling process group to the child process
unistd::tcsetpgrp(unsafe { stdin_fd() }, pid_nix)?;
return Ok(guard);
} else if pcnt
.fetch_update(Ordering::SeqCst, Ordering::SeqCst, |count| {
// Avoid a race condition: only increment if count is > 0
if count > 0 {
Some(count + 1)
} else {
None
}
})
.is_ok()
{
// We successfully added another count to the foreground process group, which means
// we only need to tell the child process to join this one
let pgrp = pgrp.load(Ordering::SeqCst);
log::trace!(
"Will ask the plugin pid={pid} to join pgrp={pgrp} for control of the \
terminal"
);
return Ok(ForegroundGuard {
pgrp: Some(pgrp),
pipeline_state: pipeline_state.clone(),
});
} else {
// The state has changed, we'll have to retry
continue;
}
}
}
/// Move the given process to the foreground.
#[cfg(not(unix))]
pub fn new(
pid: u32,
pipeline_state: &Arc<(AtomicU32, AtomicU32)>,
) -> std::io::Result<ForegroundGuard> {
let _ = (pid, pipeline_state);
Ok(ForegroundGuard {})
}
/// If the child process is expected to join a different process group to be in the foreground,
/// this returns `Some(pgrp)`. This only ever returns `Some` on Unix.
pub fn pgrp(&self) -> Option<u32> {
#[cfg(unix)]
{
self.pgrp
}
#[cfg(not(unix))]
{
None
}
}
/// This should only be called once by `Drop`
fn reset_internal(&mut self) {
#[cfg(unix)]
{
log::trace!("Leaving the foreground group");
let (pgrp, pcnt) = self.pipeline_state.as_ref();
if pcnt.fetch_sub(1, Ordering::SeqCst) == 1 {
// Clean up if we are the last one around
pgrp.store(0, Ordering::SeqCst);
foreground_pgroup::reset()
}
}
}
}
impl Drop for ForegroundGuard {
fn drop(&mut self) {
self.reset_internal();
}
}
// It's a simpler version of fish shell's external process handling.
#[cfg(unix)]
mod foreground_pgroup {
use nix::{
sys::signal::{sigaction, SaFlags, SigAction, SigHandler, SigSet, Signal},
unistd::{self, Pid},
};
use std::{
os::{
fd::{AsFd, BorrowedFd},
unix::prelude::CommandExt,
},
process::{Child, Command},
};
/// Alternative to having to call `std::io::stdin()` just to get the file descriptor of stdin
///
/// # Safety
/// I/O safety of reading from `STDIN_FILENO` unclear.
///
/// Currently only intended to access `tcsetpgrp` and `tcgetpgrp` with the I/O safe `nix`
/// interface.
pub unsafe fn stdin_fd() -> impl AsFd {
unsafe { BorrowedFd::borrow_raw(nix::libc::STDIN_FILENO) }
}
pub fn prepare_command(external_command: &mut Command, existing_pgrp: u32) {
unsafe {
// Safety:
// POSIX only allows async-signal-safe functions to be called.
// `sigaction` and `getpid` are async-signal-safe according to:
// https://manpages.ubuntu.com/manpages/bionic/man7/signal-safety.7.html
// Also, `set_foreground_pid` is async-signal-safe.
external_command.pre_exec(move || {
// When this callback is run, std::process has already:
// - reset SIGPIPE to SIG_DFL
// According to glibc's job control manual:
// https://www.gnu.org/software/libc/manual/html_node/Launching-Jobs.html
// This has to be done *both* in the parent and here in the child due to race conditions.
set_foreground_pid(Pid::this(), existing_pgrp);
// Reset signal handlers for child, sync with `terminal.rs`
let default = SigAction::new(SigHandler::SigDfl, SaFlags::empty(), SigSet::empty());
// SIGINT has special handling
let _ = sigaction(Signal::SIGQUIT, &default);
// We don't support background jobs, so keep some signals blocked for now
// let _ = sigaction(Signal::SIGTTIN, &default);
// let _ = sigaction(Signal::SIGTTOU, &default);
// We do need to reset SIGTSTP though, since some TUI
// applications implement their own Ctrl-Z handling, and
// ForegroundChild::wait() needs to be able to react to the
// child being stopped.
let _ = sigaction(Signal::SIGTSTP, &default);
let _ = sigaction(Signal::SIGTERM, &default);
Ok(())
});
}
}
pub fn set(process: &Child, existing_pgrp: u32) {
set_foreground_pid(Pid::from_raw(process.id() as i32), existing_pgrp);
}
fn set_foreground_pid(pid: Pid, existing_pgrp: u32) {
// Safety: needs to be async-signal-safe.
// `setpgid` and `tcsetpgrp` are async-signal-safe.
// `existing_pgrp` is 0 when we don't have an existing foreground process in the pipeline.
// A pgrp of 0 means the calling process's pid for `setpgid`. But not for `tcsetpgrp`.
let pgrp = if existing_pgrp == 0 {
pid
} else {
Pid::from_raw(existing_pgrp as i32)
};
let _ = unistd::setpgid(pid, pgrp);
let _ = unistd::tcsetpgrp(unsafe { stdin_fd() }, pgrp);
}
/// Reset the foreground process group to the shell
pub fn reset() {
if let Err(e) = unistd::tcsetpgrp(unsafe { stdin_fd() }, unistd::getpgrp()) {
eprintln!("ERROR: reset foreground id failed, tcsetpgrp result: {e:?}");
}
}
}