1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
use serde::{Deserialize, Serialize};
use strum_macros::EnumIter;

use std::fmt::Display;

use crate::SyntaxShape;

#[derive(Clone, Debug, Default, EnumIter, PartialEq, Eq, Serialize, Deserialize, Hash)]
pub enum Type {
    Any,
    Binary,
    Block,
    Bool,
    CellPath,
    Closure,
    Custom(String),
    Date,
    Duration,
    Error,
    Filesize,
    Float,
    Int,
    List(Box<Type>),
    ListStream,
    MatchPattern,
    #[default]
    Nothing,
    Number,
    Range,
    Record(Vec<(String, Type)>),
    Signature,
    String,
    Table(Vec<(String, Type)>),
}

impl Type {
    pub fn is_subtype(&self, other: &Type) -> bool {
        match (self, other) {
            (t, u) if t == u => true,
            (Type::Float, Type::Number) => true,
            (Type::Int, Type::Number) => true,
            (_, Type::Any) => true,
            (Type::List(t), Type::List(u)) if t.is_subtype(u) => true, // List is covariant

            // TODO: Currently Record types specify their field types. If we are
            // going to continue to do that, then it might make sense to define
            // a "structural subtyping" whereby r1 is a subtype of r2 is the
            // fields of r1 are a "subset" of the fields of r2 (names are a
            // subset and agree on types). However, if we do that, then we need
            // a way to specify the supertype of all Records. For now, we define
            // any Record to be a subtype of any other Record. This allows
            // Record(vec![]) to be used as an ad-hoc supertype of all Records
            // in command signatures. This comment applies to Tables also, with
            // "columns" in place of "fields".
            (Type::Record(_), Type::Record(_)) => true,
            (Type::Table(_), Type::Table(_)) => true,
            _ => false,
        }
    }

    pub fn is_numeric(&self) -> bool {
        matches!(self, Type::Int | Type::Float | Type::Number)
    }

    pub fn is_list(&self) -> bool {
        matches!(self, Type::List(_))
    }

    /// Does this type represent a data structure containing values that can be addressed using 'cell paths'?
    pub fn accepts_cell_paths(&self) -> bool {
        matches!(self, Type::List(_) | Type::Record(_) | Type::Table(_))
    }

    pub fn to_shape(&self) -> SyntaxShape {
        match self {
            Type::Int => SyntaxShape::Int,
            Type::Float => SyntaxShape::Number,
            Type::Range => SyntaxShape::Range,
            Type::Bool => SyntaxShape::Boolean,
            Type::String => SyntaxShape::String,
            Type::Block => SyntaxShape::Block, // FIXME needs more accuracy
            Type::Closure => SyntaxShape::Closure(None), // FIXME needs more accuracy
            Type::CellPath => SyntaxShape::CellPath,
            Type::Duration => SyntaxShape::Duration,
            Type::Date => SyntaxShape::DateTime,
            Type::Filesize => SyntaxShape::Filesize,
            Type::List(x) => SyntaxShape::List(Box::new(x.to_shape())),
            Type::Number => SyntaxShape::Number,
            Type::Nothing => SyntaxShape::Nothing,
            Type::Record(_) => SyntaxShape::Record,
            Type::Table(_) => SyntaxShape::Table,
            Type::ListStream => SyntaxShape::List(Box::new(SyntaxShape::Any)),
            Type::Any => SyntaxShape::Any,
            Type::Error => SyntaxShape::Any,
            Type::Binary => SyntaxShape::Binary,
            Type::Custom(_) => SyntaxShape::Any,
            Type::Signature => SyntaxShape::Signature,
            Type::MatchPattern => SyntaxShape::MatchPattern,
        }
    }

    /// Get a string representation, without inner type specification of lists,
    /// tables and records (get `list` instead of `list<any>`
    pub fn get_non_specified_string(&self) -> String {
        match self {
            Type::Block => String::from("block"),
            Type::Closure => String::from("closure"),
            Type::Bool => String::from("bool"),
            Type::CellPath => String::from("cell path"),
            Type::Date => String::from("date"),
            Type::Duration => String::from("duration"),
            Type::Filesize => String::from("filesize"),
            Type::Float => String::from("float"),
            Type::Int => String::from("int"),
            Type::Range => String::from("range"),
            Type::Record(_) => String::from("record"),
            Type::Table(_) => String::from("table"),
            Type::List(_) => String::from("list"),
            Type::MatchPattern => String::from("match pattern"),
            Type::Nothing => String::from("nothing"),
            Type::Number => String::from("number"),
            Type::String => String::from("string"),
            Type::ListStream => String::from("list stream"),
            Type::Any => String::from("any"),
            Type::Error => String::from("error"),
            Type::Binary => String::from("binary"),
            Type::Custom(_) => String::from("custom"),
            Type::Signature => String::from("signature"),
        }
    }
}

impl Display for Type {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        match self {
            Type::Block => write!(f, "block"),
            Type::Closure => write!(f, "closure"),
            Type::Bool => write!(f, "bool"),
            Type::CellPath => write!(f, "cell path"),
            Type::Date => write!(f, "date"),
            Type::Duration => write!(f, "duration"),
            Type::Filesize => write!(f, "filesize"),
            Type::Float => write!(f, "float"),
            Type::Int => write!(f, "int"),
            Type::Range => write!(f, "range"),
            Type::Record(fields) => {
                if fields.is_empty() {
                    write!(f, "record")
                } else {
                    write!(
                        f,
                        "record<{}>",
                        fields
                            .iter()
                            .map(|(x, y)| format!("{x}: {y}"))
                            .collect::<Vec<String>>()
                            .join(", "),
                    )
                }
            }
            Type::Table(columns) => {
                if columns.is_empty() {
                    write!(f, "table")
                } else {
                    write!(
                        f,
                        "table<{}>",
                        columns
                            .iter()
                            .map(|(x, y)| format!("{x}: {y}"))
                            .collect::<Vec<String>>()
                            .join(", ")
                    )
                }
            }
            Type::List(l) => write!(f, "list<{l}>"),
            Type::Nothing => write!(f, "nothing"),
            Type::Number => write!(f, "number"),
            Type::String => write!(f, "string"),
            Type::ListStream => write!(f, "list stream"),
            Type::Any => write!(f, "any"),
            Type::Error => write!(f, "error"),
            Type::Binary => write!(f, "binary"),
            Type::Custom(custom) => write!(f, "{custom}"),
            Type::Signature => write!(f, "signature"),
            Type::MatchPattern => write!(f, "match pattern"),
        }
    }
}

#[cfg(test)]
mod tests {
    use super::Type;
    use strum::IntoEnumIterator;

    mod subtype_relation {
        use super::*;

        #[test]
        fn test_reflexivity() {
            for ty in Type::iter() {
                assert!(ty.is_subtype(&ty));
            }
        }

        #[test]
        fn test_any_is_top_type() {
            for ty in Type::iter() {
                assert!(ty.is_subtype(&Type::Any));
            }
        }

        #[test]
        fn test_number_supertype() {
            assert!(Type::Int.is_subtype(&Type::Number));
            assert!(Type::Float.is_subtype(&Type::Number));
        }

        #[test]
        fn test_list_covariance() {
            for ty1 in Type::iter() {
                for ty2 in Type::iter() {
                    let list_ty1 = Type::List(Box::new(ty1.clone()));
                    let list_ty2 = Type::List(Box::new(ty2.clone()));
                    assert_eq!(list_ty1.is_subtype(&list_ty2), ty1.is_subtype(&ty2));
                }
            }
        }
    }
}