1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
use fancy_regex::Regex;
use nu_protocol::ast::Call;
use nu_protocol::engine::{Command, EngineState, Stack};
use nu_protocol::{
    record, Category, Example, PipelineData, Record, ShellError, Signature, Span, Type, Value,
};
use std::collections::BTreeMap;
use std::{fmt, str};
use unicode_segmentation::UnicodeSegmentation;

// borrowed liberally from here https://github.com/dead10ck/uwc
pub type Counted = BTreeMap<Counter, usize>;

#[derive(Clone)]
pub struct Size;

impl Command for Size {
    fn name(&self) -> &str {
        "size"
    }

    fn signature(&self) -> Signature {
        Signature::build("size")
            .category(Category::Strings)
            .input_output_types(vec![(Type::String, Type::Record(vec![]))])
    }

    fn usage(&self) -> &str {
        "Gather word count statistics on the text."
    }

    fn search_terms(&self) -> Vec<&str> {
        vec!["count", "word", "character", "unicode", "wc"]
    }

    fn run(
        &self,
        engine_state: &EngineState,
        _stack: &mut Stack,
        call: &Call,
        input: PipelineData,
    ) -> Result<PipelineData, ShellError> {
        size(engine_state, call, input)
    }

    fn examples(&self) -> Vec<Example> {
        vec![
            Example {
                description: "Count the number of words in a string",
                example: r#""There are seven words in this sentence" | size"#,
                result: Some(Value::test_record(Record {
                    cols: vec![
                        "lines".into(),
                        "words".into(),
                        "bytes".into(),
                        "chars".into(),
                        "graphemes".into(),
                    ],
                    vals: vec![
                        Value::test_int(1),
                        Value::test_int(7),
                        Value::test_int(38),
                        Value::test_int(38),
                        Value::test_int(38),
                    ],
                })),
            },
            Example {
                description: "Counts unicode characters",
                example: r#"'今天天气真好' | size "#,
                result: Some(Value::test_record(Record {
                    cols: vec![
                        "lines".into(),
                        "words".into(),
                        "bytes".into(),
                        "chars".into(),
                        "graphemes".into(),
                    ],
                    vals: vec![
                        Value::test_int(1),
                        Value::test_int(6),
                        Value::test_int(18),
                        Value::test_int(6),
                        Value::test_int(6),
                    ],
                })),
            },
            Example {
                description: "Counts Unicode characters correctly in a string",
                example: r#""Amélie Amelie" | size"#,
                result: Some(Value::test_record(Record {
                    cols: vec![
                        "lines".into(),
                        "words".into(),
                        "bytes".into(),
                        "chars".into(),
                        "graphemes".into(),
                    ],
                    vals: vec![
                        Value::test_int(1),
                        Value::test_int(2),
                        Value::test_int(15),
                        Value::test_int(14),
                        Value::test_int(13),
                    ],
                })),
            },
        ]
    }
}

fn size(
    engine_state: &EngineState,
    call: &Call,
    input: PipelineData,
) -> Result<PipelineData, ShellError> {
    let span = call.head;
    // This doesn't match explicit nulls
    if matches!(input, PipelineData::Empty) {
        return Err(ShellError::PipelineEmpty { dst_span: span });
    }
    input.map(
        move |v| {
            let value_span = v.span();
            // First, obtain the span. If this fails, propagate the error that results.
            if let Value::Error { error, .. } = v {
                return Value::error(*error, span);
            }
            // Now, check if it's a string.
            match v.as_string() {
                Ok(s) => counter(&s, span),
                Err(_) => Value::error(
                    ShellError::PipelineMismatch {
                        exp_input_type: "string".into(),
                        dst_span: span,
                        src_span: value_span,
                    },
                    span,
                ),
            }
        },
        engine_state.ctrlc.clone(),
    )
}

fn counter(contents: &str, span: Span) -> Value {
    let counts = uwc_count(&ALL_COUNTERS[..], contents);

    fn get_count(counts: &BTreeMap<Counter, usize>, counter: Counter, span: Span) -> Value {
        Value::int(counts.get(&counter).copied().unwrap_or(0) as i64, span)
    }

    let record = record! {
        "lines" => get_count(&counts, Counter::Lines, span),
        "words" => get_count(&counts, Counter::Words, span),
        "bytes" => get_count(&counts, Counter::Bytes, span),
        "chars" => get_count(&counts, Counter::CodePoints, span),
        "graphemes" => get_count(&counts, Counter::GraphemeClusters, span),
    };

    Value::record(record, span)
}

/// Take all the counts in `other_counts` and sum them into `accum`.
// pub fn sum_counts(accum: &mut Counted, other_counts: &Counted) {
//     for (counter, count) in other_counts {
//         let entry = accum.entry(*counter).or_insert(0);
//         *entry += count;
//     }
// }

/// Sums all the `Counted` instances into a new one.
// pub fn sum_all_counts<'a, I>(counts: I) -> Counted
// where
//     I: IntoIterator<Item = &'a Counted>,
// {
//     let mut totals = BTreeMap::new();
//     for counts in counts {
//         sum_counts(&mut totals, counts);
//     }
//     totals
// }

/// Something that counts things in `&str`s.
pub trait Count {
    /// Counts something in the given `&str`.
    fn count(&self, s: &str) -> usize;
}

impl Count for Counter {
    fn count(&self, s: &str) -> usize {
        match *self {
            Counter::GraphemeClusters => s.graphemes(true).count(),
            Counter::Bytes => s.len(),
            Counter::Lines => {
                const LF: &str = "\n"; // 0xe0000a
                const CR: &str = "\r"; // 0xe0000d
                const CRLF: &str = "\r\n"; // 0xe00d0a
                const NEL: &str = "\u{0085}"; // 0x00c285
                const FF: &str = "\u{000C}"; // 0x00000c
                const LS: &str = "\u{2028}"; // 0xe280a8
                const PS: &str = "\u{2029}"; // 0xe280a9

                // use regex here because it can search for CRLF first and not duplicate the count
                let line_ending_types = [CRLF, LF, CR, NEL, FF, LS, PS];
                let pattern = &line_ending_types.join("|");
                let newline_pattern = Regex::new(pattern).expect("Unable to create regex");
                let line_endings = newline_pattern
                    .find_iter(s)
                    .map(|f| match f {
                        Ok(mat) => mat.as_str().to_string(),
                        Err(_) => "".to_string(),
                    })
                    .collect::<Vec<String>>();

                let has_line_ending_suffix =
                    line_ending_types.iter().any(|&suffix| s.ends_with(suffix));
                // eprintln!("suffix = {}", has_line_ending_suffix);

                if has_line_ending_suffix {
                    line_endings.len()
                } else {
                    line_endings.len() + 1
                }
            }
            Counter::Words => s.unicode_words().count(),
            Counter::CodePoints => s.chars().count(),
        }
    }
}

/// Different types of counters.
#[derive(Debug, Hash, PartialEq, Eq, PartialOrd, Ord, Copy, Clone)]
pub enum Counter {
    /// Counts lines.
    Lines,

    /// Counts words.
    Words,

    /// Counts the total number of bytes.
    Bytes,

    /// Counts grapheme clusters. The input is required to be valid UTF-8.
    GraphemeClusters,

    /// Counts unicode code points
    CodePoints,
}

/// A convenience array of all counter types.
pub const ALL_COUNTERS: [Counter; 5] = [
    Counter::GraphemeClusters,
    Counter::Bytes,
    Counter::Lines,
    Counter::Words,
    Counter::CodePoints,
];

impl fmt::Display for Counter {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        let s = match *self {
            Counter::GraphemeClusters => "graphemes",
            Counter::Bytes => "bytes",
            Counter::Lines => "lines",
            Counter::Words => "words",
            Counter::CodePoints => "codepoints",
        };

        write!(f, "{s}")
    }
}

/// Counts the given `Counter`s in the given `&str`.
pub fn uwc_count<'a, I>(counters: I, s: &str) -> Counted
where
    I: IntoIterator<Item = &'a Counter>,
{
    let mut counts: Counted = counters.into_iter().map(|c| (*c, c.count(s))).collect();
    if let Some(lines) = counts.get_mut(&Counter::Lines) {
        if s.is_empty() {
            // If s is empty, indeed, the count is 0
            *lines = 0;
        } else if *lines == 0 && !s.is_empty() {
            // If s is not empty and the count is 0, it means there
            // is a line without a line ending, so let's make it 1
            *lines = 1;
        } else {
            // no change, whatever the count is, is right
        }
    }
    counts
}

#[cfg(test)]
mod test {
    use super::*;

    #[test]
    fn test_examples() {
        use crate::test_examples;

        test_examples(Size {})
    }
}

#[test]
fn test_one_newline() {
    let s = "\n".to_string();
    let counts = uwc_count(&ALL_COUNTERS[..], &s);
    let mut correct_counts = BTreeMap::new();
    correct_counts.insert(Counter::Lines, 1);
    correct_counts.insert(Counter::Words, 0);
    correct_counts.insert(Counter::GraphemeClusters, 1);
    correct_counts.insert(Counter::Bytes, 1);
    correct_counts.insert(Counter::CodePoints, 1);

    assert_eq!(correct_counts, counts);
}

#[test]
fn test_count_counts_lines() {
    // const LF: &str = "\n"; // 0xe0000a
    // const CR: &str = "\r"; // 0xe0000d
    // const CRLF: &str = "\r\n"; // 0xe00d0a
    const NEL: &str = "\u{0085}"; // 0x00c285
    const FF: &str = "\u{000C}"; // 0x00000c
    const LS: &str = "\u{2028}"; // 0xe280a8
    const PS: &str = "\u{2029}"; // 0xe280a9

    // * \r\n is a single grapheme cluster
    // * trailing newlines are counted
    // * NEL is 2 bytes
    // * FF is 1 byte
    // * LS is 3 bytes
    // * PS is 3 bytes
    let mut s = String::from("foo\r\nbar\n\nbaz");
    s += NEL;
    s += "quux";
    s += FF;
    s += LS;
    s += "xi";
    s += PS;
    s += "\n";

    let counts = uwc_count(&ALL_COUNTERS[..], &s);

    let mut correct_counts = BTreeMap::new();
    correct_counts.insert(Counter::Lines, 8);
    correct_counts.insert(Counter::Words, 5);
    correct_counts.insert(Counter::GraphemeClusters, 23);
    correct_counts.insert(Counter::Bytes, 29);

    // one more than grapheme clusters because of \r\n
    correct_counts.insert(Counter::CodePoints, 24);

    assert_eq!(correct_counts, counts);
}

#[test]
fn test_count_counts_words() {
    let i_can_eat_glass = "Μπορῶ νὰ φάω σπασμένα γυαλιὰ χωρὶς νὰ πάθω τίποτα.";
    let s = String::from(i_can_eat_glass);

    let counts = uwc_count(&ALL_COUNTERS[..], &s);

    let mut correct_counts = BTreeMap::new();
    correct_counts.insert(Counter::GraphemeClusters, 50);
    correct_counts.insert(Counter::Lines, 1);
    correct_counts.insert(Counter::Bytes, i_can_eat_glass.len());
    correct_counts.insert(Counter::Words, 9);
    correct_counts.insert(Counter::CodePoints, 50);

    assert_eq!(correct_counts, counts);
}

#[test]
fn test_count_counts_codepoints() {
    // these are NOT the same! One is e + ́́ , and one is é, a single codepoint
    let one = "é";
    let two = "é";

    let counters = [Counter::CodePoints];

    let counts = uwc_count(&counters[..], one);

    let mut correct_counts = BTreeMap::new();
    correct_counts.insert(Counter::CodePoints, 1);

    assert_eq!(correct_counts, counts);

    let counts = uwc_count(&counters[..], two);

    let mut correct_counts = BTreeMap::new();
    correct_counts.insert(Counter::CodePoints, 2);

    assert_eq!(correct_counts, counts);
}