nu_command/charting/
histogram.rs

1use super::hashable_value::HashableValue;
2use itertools::Itertools;
3use nu_engine::command_prelude::*;
4
5use std::collections::HashMap;
6
7#[derive(Clone)]
8pub struct Histogram;
9
10enum PercentageCalcMethod {
11    Normalize,
12    Relative,
13}
14
15impl Command for Histogram {
16    fn name(&self) -> &str {
17        "histogram"
18    }
19
20    fn signature(&self) -> Signature {
21        Signature::build("histogram")
22            .input_output_types(vec![(Type::List(Box::new(Type::Any)), Type::table()),])
23            .optional("column-name", SyntaxShape::String, "Column name to calc frequency, no need to provide if input is a list.")
24            .optional("frequency-column-name", SyntaxShape::String, "Histogram's frequency column, default to be frequency column output.")
25            .named("percentage-type", SyntaxShape::String, "percentage calculate method, can be 'normalize' or 'relative', in 'normalize', defaults to be 'normalize'", Some('t'))
26            .category(Category::Chart)
27    }
28
29    fn description(&self) -> &str {
30        "Creates a new table with a histogram based on the column name passed in."
31    }
32
33    fn examples(&self) -> Vec<Example> {
34        vec![
35            Example {
36                description: "Compute a histogram of file types",
37                example: "ls | histogram type",
38                result: None,
39            },
40            Example {
41                description:
42                    "Compute a histogram for the types of files, with frequency column named freq",
43                example: "ls | histogram type freq",
44                result: None,
45            },
46            Example {
47                description: "Compute a histogram for a list of numbers",
48                example: "[1 2 1] | histogram",
49                result: Some(Value::test_list (
50                        vec![Value::test_record(record! {
51                            "value" =>      Value::test_int(1),
52                            "count" =>      Value::test_int(2),
53                            "quantile" =>   Value::test_float(0.6666666666666666),
54                            "percentage" => Value::test_string("66.67%"),
55                            "frequency" =>  Value::test_string("******************************************************************"),
56                        }),
57                        Value::test_record(record! {
58                            "value" =>      Value::test_int(2),
59                            "count" =>      Value::test_int(1),
60                            "quantile" =>   Value::test_float(0.3333333333333333),
61                            "percentage" => Value::test_string("33.33%"),
62                            "frequency" =>  Value::test_string("*********************************"),
63                        })],
64                    )
65                 ),
66            },
67            Example {
68                description: "Compute a histogram for a list of numbers, and percentage is based on the maximum value",
69                example: "[1 2 3 1 1 1 2 2 1 1] | histogram --percentage-type relative",
70                result: None,
71            }
72        ]
73    }
74
75    fn run(
76        &self,
77        engine_state: &EngineState,
78        stack: &mut Stack,
79        call: &Call,
80        input: PipelineData,
81    ) -> Result<PipelineData, ShellError> {
82        // input check.
83        let column_name: Option<Spanned<String>> = call.opt(engine_state, stack, 0)?;
84        let frequency_name_arg = call.opt::<Spanned<String>>(engine_state, stack, 1)?;
85        let frequency_column_name = match frequency_name_arg {
86            Some(inner) => {
87                let forbidden_column_names = ["value", "count", "quantile", "percentage"];
88                if forbidden_column_names.contains(&inner.item.as_str()) {
89                    return Err(ShellError::TypeMismatch {
90                        err_message: format!(
91                            "frequency-column-name can't be {}",
92                            forbidden_column_names
93                                .iter()
94                                .map(|val| format!("'{}'", val))
95                                .collect::<Vec<_>>()
96                                .join(", ")
97                        ),
98                        span: inner.span,
99                    });
100                }
101                inner.item
102            }
103            None => "frequency".to_string(),
104        };
105
106        let calc_method: Option<Spanned<String>> =
107            call.get_flag(engine_state, stack, "percentage-type")?;
108        let calc_method = match calc_method {
109            None => PercentageCalcMethod::Normalize,
110            Some(inner) => match inner.item.as_str() {
111                "normalize" => PercentageCalcMethod::Normalize,
112                "relative" => PercentageCalcMethod::Relative,
113                _ => {
114                    return Err(ShellError::TypeMismatch {
115                        err_message: "calc method can only be 'normalize' or 'relative'"
116                            .to_string(),
117                        span: inner.span,
118                    })
119                }
120            },
121        };
122
123        let span = call.head;
124        let data_as_value = input.into_value(span)?;
125        let value_span = data_as_value.span();
126        // `input` is not a list, here we can return an error.
127        run_histogram(
128            data_as_value.into_list()?,
129            column_name,
130            frequency_column_name,
131            calc_method,
132            span,
133            // Note that as_list() filters out Value::Error here.
134            value_span,
135        )
136    }
137}
138
139fn run_histogram(
140    values: Vec<Value>,
141    column_name: Option<Spanned<String>>,
142    freq_column: String,
143    calc_method: PercentageCalcMethod,
144    head_span: Span,
145    list_span: Span,
146) -> Result<PipelineData, ShellError> {
147    let mut inputs = vec![];
148    // convert from inputs to hashable values.
149    match column_name {
150        None => {
151            // some invalid input scenario needs to handle:
152            // Expect input is a list of hashable value, if one value is not hashable, throw out error.
153            for v in values {
154                match v {
155                    // Propagate existing errors.
156                    Value::Error { error, .. } => return Err(*error),
157                    _ => {
158                        let t = v.get_type();
159                        let span = v.span();
160                        inputs.push(HashableValue::from_value(v, head_span).map_err(|_| {
161                        ShellError::UnsupportedInput { msg: "Since column-name was not provided, only lists of hashable values are supported.".to_string(), input: format!(
162                                "input type: {t:?}"
163                            ), msg_span: head_span, input_span: span }
164                    })?)
165                    }
166                }
167            }
168        }
169        Some(ref col) => {
170            // some invalid input scenario needs to handle:
171            // * item in `input` is not a record, just skip it.
172            // * a record doesn't contain specific column, just skip it.
173            // * all records don't contain specific column, throw out error, indicate at least one row should contains specific column.
174            // * a record contain a value which can't be hashed, skip it.
175            let col_name = &col.item;
176            for v in values {
177                match v {
178                    // parse record, and fill valid value to actual input.
179                    Value::Record { val, .. } => {
180                        if let Some(v) = val.get(col_name) {
181                            if let Ok(v) = HashableValue::from_value(v.clone(), head_span) {
182                                inputs.push(v);
183                            }
184                        }
185                    }
186                    // Propagate existing errors.
187                    Value::Error { error, .. } => return Err(*error),
188                    _ => continue,
189                }
190            }
191
192            if inputs.is_empty() {
193                return Err(ShellError::CantFindColumn {
194                    col_name: col_name.clone(),
195                    span: Some(head_span),
196                    src_span: list_span,
197                });
198            }
199        }
200    }
201
202    let value_column_name = column_name
203        .map(|x| x.item)
204        .unwrap_or_else(|| "value".to_string());
205    Ok(histogram_impl(
206        inputs,
207        &value_column_name,
208        calc_method,
209        &freq_column,
210        head_span,
211    ))
212}
213
214fn histogram_impl(
215    inputs: Vec<HashableValue>,
216    value_column_name: &str,
217    calc_method: PercentageCalcMethod,
218    freq_column: &str,
219    span: Span,
220) -> PipelineData {
221    // here we can make sure that inputs is not empty, and every elements
222    // is a simple val and ok to make count.
223    let mut counter = HashMap::new();
224    let mut max_cnt = 0;
225    let total_cnt = inputs.len();
226    for i in inputs {
227        let new_cnt = *counter.get(&i).unwrap_or(&0) + 1;
228        counter.insert(i, new_cnt);
229        if new_cnt > max_cnt {
230            max_cnt = new_cnt;
231        }
232    }
233
234    let mut result = vec![];
235    const MAX_FREQ_COUNT: f64 = 100.0;
236    for (val, count) in counter.into_iter().sorted() {
237        let quantile = match calc_method {
238            PercentageCalcMethod::Normalize => count as f64 / total_cnt as f64,
239            PercentageCalcMethod::Relative => count as f64 / max_cnt as f64,
240        };
241
242        let percentage = format!("{:.2}%", quantile * 100_f64);
243        let freq = "*".repeat((MAX_FREQ_COUNT * quantile).floor() as usize);
244
245        result.push((
246            count, // attach count first for easily sorting.
247            Value::record(
248                record! {
249                    value_column_name => val.into_value(),
250                    "count" => Value::int(count, span),
251                    "quantile" => Value::float(quantile, span),
252                    "percentage" => Value::string(percentage, span),
253                    freq_column => Value::string(freq, span),
254                },
255                span,
256            ),
257        ));
258    }
259    result.sort_by(|a, b| b.0.cmp(&a.0));
260    Value::list(result.into_iter().map(|x| x.1).collect(), span).into_pipeline_data()
261}
262
263#[cfg(test)]
264mod tests {
265    use super::*;
266
267    #[test]
268    fn test_examples() {
269        use crate::test_examples;
270
271        test_examples(Histogram)
272    }
273}