nu_command/strings/encode_decode/
decode.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
use nu_engine::command_prelude::*;
use oem_cp::decode_string_complete_table;
use std::collections::HashMap;
use std::sync::LazyLock;

// create a lazycell of all the code_table "Complete" code pages
// the commented out code pages are "Incomplete", which means they
// are stored as Option<char> and not &[char; 128]
static OEM_DECODE: LazyLock<HashMap<usize, &[char; 128]>> = LazyLock::new(|| {
    let mut m = HashMap::new();
    m.insert(437, &oem_cp::code_table::DECODING_TABLE_CP437);
    // m.insert(720, &oem_cp::code_table::DECODING_TABLE_CP720);
    m.insert(737, &oem_cp::code_table::DECODING_TABLE_CP737);
    m.insert(775, &oem_cp::code_table::DECODING_TABLE_CP775);

    m.insert(850, &oem_cp::code_table::DECODING_TABLE_CP850);
    m.insert(852, &oem_cp::code_table::DECODING_TABLE_CP852);
    m.insert(855, &oem_cp::code_table::DECODING_TABLE_CP855);
    // m.insert(857, &oem_cp::code_table::DECODING_TABLE_CP857);
    m.insert(858, &oem_cp::code_table::DECODING_TABLE_CP858);
    m.insert(860, &oem_cp::code_table::DECODING_TABLE_CP860);
    m.insert(861, &oem_cp::code_table::DECODING_TABLE_CP861);
    m.insert(862, &oem_cp::code_table::DECODING_TABLE_CP862);
    m.insert(863, &oem_cp::code_table::DECODING_TABLE_CP863);
    // m.insert(864, &oem_cp::code_table::DECODING_TABLE_CP864);
    m.insert(865, &oem_cp::code_table::DECODING_TABLE_CP865);
    m.insert(866, &oem_cp::code_table::DECODING_TABLE_CP866);
    // m.insert(869, &oem_cp::code_table::DECODING_TABLE_CP869);
    // m.insert(874, &oem_cp::code_table::DECODING_TABLE_CP874);

    m
});

#[derive(Clone)]
pub struct Decode;

impl Command for Decode {
    fn name(&self) -> &str {
        "decode"
    }

    fn description(&self) -> &str {
        "Decode bytes into a string."
    }

    fn search_terms(&self) -> Vec<&str> {
        vec!["text", "encoding", "decoding"]
    }

    fn signature(&self) -> nu_protocol::Signature {
        Signature::build("decode")
            .input_output_types(vec![(Type::Binary, Type::String)])
            .optional("encoding", SyntaxShape::String, "The text encoding to use.")
            .category(Category::Strings)
    }

    fn extra_description(&self) -> &str {
        r#"Multiple encodings are supported; here are a few:
big5, euc-jp, euc-kr, gbk, iso-8859-1, utf-16, cp1252, latin5

For a more complete list of encodings please refer to the encoding_rs
documentation link at https://docs.rs/encoding_rs/latest/encoding_rs/#statics"#
    }

    fn examples(&self) -> Vec<Example> {
        vec![
            Example {
                description: "Decode the output of an external command",
                example: "^cat myfile.q | decode utf-8",
                result: None,
            },
            Example {
                description: "Decode an UTF-16 string into nushell UTF-8 string",
                example: r#"0x[00 53 00 6F 00 6D 00 65 00 20 00 44 00 61 00 74 00 61] | decode utf-16be"#,
                result: Some(Value::string("Some Data".to_owned(), Span::test_data())),
            },
        ]
    }

    fn is_const(&self) -> bool {
        true
    }

    fn run(
        &self,
        engine_state: &EngineState,
        stack: &mut Stack,
        call: &Call,
        input: PipelineData,
    ) -> Result<PipelineData, ShellError> {
        let encoding: Option<Spanned<String>> = call.opt(engine_state, stack, 0)?;
        run(call, input, encoding)
    }

    fn run_const(
        &self,
        working_set: &StateWorkingSet,
        call: &Call,
        input: PipelineData,
    ) -> Result<PipelineData, ShellError> {
        let encoding: Option<Spanned<String>> = call.opt_const(working_set, 0)?;
        run(call, input, encoding)
    }
}

fn run(
    call: &Call,
    input: PipelineData,
    encoding: Option<Spanned<String>>,
) -> Result<PipelineData, ShellError> {
    let head = call.head;

    match input {
        PipelineData::ByteStream(stream, ..) => {
            let span = stream.span();
            let bytes = stream.into_bytes()?;
            match encoding {
                Some(encoding_name) => detect_and_decode(encoding_name, head, bytes),
                None => super::encoding::detect_encoding_name(head, span, &bytes)
                    .map(|encoding| encoding.decode(&bytes).0.into_owned())
                    .map(|s| Value::string(s, head)),
            }
            .map(|val| val.into_pipeline_data())
        }
        PipelineData::Value(v, ..) => {
            let input_span = v.span();
            match v {
                Value::Binary { val: bytes, .. } => match encoding {
                    Some(encoding_name) => detect_and_decode(encoding_name, head, bytes),
                    None => super::encoding::detect_encoding_name(head, input_span, &bytes)
                        .map(|encoding| encoding.decode(&bytes).0.into_owned())
                        .map(|s| Value::string(s, head)),
                }
                .map(|val| val.into_pipeline_data()),
                Value::Error { error, .. } => Err(*error),
                _ => Err(ShellError::OnlySupportsThisInputType {
                    exp_input_type: "binary".into(),
                    wrong_type: v.get_type().to_string(),
                    dst_span: head,
                    src_span: v.span(),
                }),
            }
        }
        // This should be more precise, but due to difficulties in getting spans
        // from PipelineData::ListData, this is as it is.
        _ => Err(ShellError::UnsupportedInput {
            msg: "non-binary input".into(),
            input: "value originates from here".into(),
            msg_span: head,
            input_span: input.span().unwrap_or(head),
        }),
    }
}

// Since we have two different decoding mechanisms, we allow oem_cp to be
// specified by only a number like `open file | decode 850`. If this decode
// parameter parses as a usize then we assume it was intentional and use oem_cp
// crate. Otherwise, if it doesn't parse as a usize, we assume it was a string
// and use the encoding_rs crate to try and decode it.
fn detect_and_decode(
    encoding_name: Spanned<String>,
    head: Span,
    bytes: Vec<u8>,
) -> Result<Value, ShellError> {
    let dec_table_id = encoding_name.item.parse::<usize>().unwrap_or(0usize);
    if dec_table_id == 0 {
        super::encoding::decode(head, encoding_name, &bytes)
    } else {
        Ok(Value::string(
            decode_string_complete_table(&bytes, OEM_DECODE[&dec_table_id]),
            head,
        ))
    }
}

#[cfg(test)]
mod test {
    use super::*;

    #[test]
    fn test_examples() {
        crate::test_examples(Decode)
    }
}