1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
//! A runtime implementation that runs everything on the current thread.
#![allow(clippy::return_self_not_must_use)]

mod arbiter;
mod builder;
mod system;

pub use self::arbiter::Arbiter;
pub use self::builder::{Builder, SystemRunner};
pub use self::system::System;

#[allow(dead_code)]
#[cfg(all(feature = "glommio", target_os = "linux"))]
mod glommio {
    use std::{future::Future, pin::Pin, task::Context, task::Poll};

    use futures_channel::oneshot::{self, Canceled};
    use glomm_io::{task, Task};
    use once_cell::sync::Lazy;
    use parking_lot::Mutex;
    use threadpool::ThreadPool;

    /// Runs the provided future, blocking the current thread until the future
    /// completes.
    pub fn block_on<F: Future<Output = ()>>(fut: F) {
        let ex = glomm_io::LocalExecutor::default();
        ex.run(async move {
            let _ = fut.await;
        })
    }

    /// Spawn a future on the current thread. This does not create a new Arbiter
    /// or Arbiter address, it is simply a helper for spawning futures on the current
    /// thread.
    ///
    /// # Panics
    ///
    /// This function panics if ntex system is not running.
    #[inline]
    pub fn spawn<F>(f: F) -> JoinHandle<F::Output>
    where
        F: Future + 'static,
        F::Output: 'static,
    {
        JoinHandle {
            fut: Either::Left(
                Task::local(async move {
                    let _ = Task::<()>::later().await;
                    f.await
                })
                .detach(),
            ),
        }
    }

    /// Executes a future on the current thread. This does not create a new Arbiter
    /// or Arbiter address, it is simply a helper for executing futures on the current
    /// thread.
    ///
    /// # Panics
    ///
    /// This function panics if ntex system is not running.
    #[inline]
    pub fn spawn_fn<F, R>(f: F) -> JoinHandle<R::Output>
    where
        F: FnOnce() -> R + 'static,
        R: Future + 'static,
    {
        spawn(async move { f().await })
    }

    /// Env variable for default cpu pool size.
    const ENV_CPU_POOL_VAR: &str = "THREADPOOL";

    static DEFAULT_POOL: Lazy<Mutex<ThreadPool>> = Lazy::new(|| {
        let num = std::env::var(ENV_CPU_POOL_VAR)
            .map_err(|_| ())
            .and_then(|val| {
                val.parse().map_err(|_| {
                    log::warn!("Can not parse {} value, using default", ENV_CPU_POOL_VAR,)
                })
            })
            .unwrap_or_else(|_| num_cpus::get() * 5);
        Mutex::new(
            threadpool::Builder::new()
                .thread_name("ntex".to_owned())
                .num_threads(num)
                .build(),
        )
    });

    thread_local! {
        static POOL: ThreadPool = {
            DEFAULT_POOL.lock().clone()
        };
    }

    enum Either<T1, T2> {
        Left(T1),
        Right(T2),
    }

    /// Blocking operation completion future. It resolves with results
    /// of blocking function execution.
    pub struct JoinHandle<T> {
        fut: Either<task::JoinHandle<T>, oneshot::Receiver<T>>,
    }

    impl<T> Future for JoinHandle<T> {
        type Output = Result<T, Canceled>;

        fn poll(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
            match self.fut {
                Either::Left(ref mut f) => match Pin::new(f).poll(cx) {
                    Poll::Pending => Poll::Pending,
                    Poll::Ready(res) => Poll::Ready(res.ok_or(Canceled)),
                },
                Either::Right(ref mut f) => Pin::new(f).poll(cx),
            }
        }
    }

    pub fn spawn_blocking<F, T>(f: F) -> JoinHandle<T>
    where
        F: FnOnce() -> T + Send + 'static,
        T: Send + 'static,
    {
        let (tx, rx) = oneshot::channel();
        POOL.with(|pool| {
            pool.execute(move || {
                if !tx.is_canceled() {
                    let _ = tx.send(f());
                }
            })
        });

        JoinHandle {
            fut: Either::Right(rx),
        }
    }
}

#[cfg(feature = "tokio")]
mod tokio {
    use std::future::Future;
    pub use tok_io::task::{spawn_blocking, JoinError, JoinHandle};

    /// Runs the provided future, blocking the current thread until the future
    /// completes.
    pub fn block_on<F: Future<Output = ()>>(fut: F) {
        let rt = tok_io::runtime::Builder::new_current_thread()
            .enable_all()
            .build()
            .unwrap();
        tok_io::task::LocalSet::new().block_on(&rt, fut);
    }

    /// Spawn a future on the current thread. This does not create a new Arbiter
    /// or Arbiter address, it is simply a helper for spawning futures on the current
    /// thread.
    ///
    /// # Panics
    ///
    /// This function panics if ntex system is not running.
    #[inline]
    pub fn spawn<F>(f: F) -> tok_io::task::JoinHandle<F::Output>
    where
        F: Future + 'static,
    {
        tok_io::task::spawn_local(f)
    }

    /// Executes a future on the current thread. This does not create a new Arbiter
    /// or Arbiter address, it is simply a helper for executing futures on the current
    /// thread.
    ///
    /// # Panics
    ///
    /// This function panics if ntex system is not running.
    #[inline]
    pub fn spawn_fn<F, R>(f: F) -> tok_io::task::JoinHandle<R::Output>
    where
        F: FnOnce() -> R + 'static,
        R: Future + 'static,
    {
        spawn(async move { f().await })
    }
}

#[allow(dead_code)]
#[cfg(feature = "async-std")]
mod asyncstd {
    use futures_core::ready;
    use std::{future::Future, pin::Pin, task::Context, task::Poll};

    /// Runs the provided future, blocking the current thread until the future
    /// completes.
    pub fn block_on<F: Future<Output = ()>>(fut: F) {
        async_std::task::block_on(fut);
    }

    /// Spawn a future on the current thread. This does not create a new Arbiter
    /// or Arbiter address, it is simply a helper for spawning futures on the current
    /// thread.
    ///
    /// # Panics
    ///
    /// This function panics if ntex system is not running.
    #[inline]
    pub fn spawn<F>(f: F) -> JoinHandle<F::Output>
    where
        F: Future + 'static,
    {
        JoinHandle {
            fut: async_std::task::spawn_local(f),
        }
    }

    /// Executes a future on the current thread. This does not create a new Arbiter
    /// or Arbiter address, it is simply a helper for executing futures on the current
    /// thread.
    ///
    /// # Panics
    ///
    /// This function panics if ntex system is not running.
    #[inline]
    pub fn spawn_fn<F, R>(f: F) -> JoinHandle<R::Output>
    where
        F: FnOnce() -> R + 'static,
        R: Future + 'static,
    {
        spawn(async move { f().await })
    }

    /// Spawns a blocking task.
    ///
    /// The task will be spawned onto a thread pool specifically dedicated
    /// to blocking tasks. This is useful to prevent long-running synchronous
    /// operations from blocking the main futures executor.
    pub fn spawn_blocking<F, T>(f: F) -> JoinHandle<T>
    where
        F: FnOnce() -> T + Send + 'static,
        T: Send + 'static,
    {
        JoinHandle {
            fut: async_std::task::spawn_blocking(f),
        }
    }

    #[derive(Debug, Copy, Clone, derive_more::Display)]
    pub struct JoinError;
    impl std::error::Error for JoinError {}

    pub struct JoinHandle<T> {
        fut: async_std::task::JoinHandle<T>,
    }

    impl<T> Future for JoinHandle<T> {
        type Output = Result<T, JoinError>;

        fn poll(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
            Poll::Ready(Ok(ready!(Pin::new(&mut self.fut).poll(cx))))
        }
    }
}

#[cfg(feature = "tokio")]
pub use self::tokio::*;

#[cfg(all(
    not(feature = "tokio"),
    not(feature = "glommio"),
    feature = "async-std",
    target_os = "linux"
))]
pub use self::asyncstd::*;

#[cfg(all(
    not(feature = "tokio"),
    not(feature = "async-std"),
    feature = "glommio"
))]
pub use self::glommio::*;

/// Runs the provided future, blocking the current thread until the future
/// completes.
#[cfg(all(
    not(feature = "tokio"),
    not(feature = "async-std"),
    not(feature = "glommio")
))]
pub fn block_on<F: std::future::Future<Output = ()>>(_: F) {
    panic!("async runtime is not configured");
}

#[cfg(all(
    not(feature = "tokio"),
    not(feature = "async-std"),
    not(feature = "glommio")
))]
pub fn spawn<F>(_: F) -> std::pin::Pin<Box<dyn std::future::Future<Output = F::Output>>>
where
    F: std::future::Future + 'static,
{
    unimplemented!()
}