1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
/*
 *
 * This file is a part of NovaEngine
 * https://gitlab.com/MindSpunk/NovaEngine
 *
 *
 * MIT License
 *
 * Copyright (c) 2018 Nathan Voglsam
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in all
 * copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */

#[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
mod simd_x86;

use core::fmt::Display;
use core::fmt::Error;
use core::fmt::Formatter;
use core::ops::Add;
use core::ops::AddAssign;
use core::ops::Div;
use core::ops::DivAssign;
use core::ops::Index;
use core::ops::IndexMut;
use core::ops::Mul;
use core::ops::MulAssign;
use core::ops::Sub;
use core::ops::SubAssign;
use core::ptr;

use crate::traits::Column;
use crate::traits::ColumnRef;
use crate::traits::ColumnRefMut;
use crate::traits::DotProduct;
use crate::traits::IntoSTD140;
use crate::traits::Inverse;
use crate::traits::InverseAssign;
use crate::traits::Normalize;
use crate::traits::Real;
use crate::traits::Row;
use crate::traits::Transpose;
use crate::traits::TransposeAssign;
use crate::vector::TVec3;
use crate::vector::TVec4;

///
/// A column major 4x4 floating point matrix
///
#[repr(C)]
#[repr(align(16))]
#[derive(Clone, Debug)]
pub struct TMat4x4<T: Real> {
    data: [T; 16],
}

impl<T: Real> TMat4x4<T> {
    ///
    /// Construct a new 4x4 matrix from a flat array of 16 elements
    ///
    #[inline]
    pub fn new(input: [T; 16]) -> TMat4x4<T> {
        TMat4x4 { data: input }
    }

    ///
    /// Construct a new 4x4 matrix of entirely zeroes
    ///
    #[inline]
    pub fn zero() -> TMat4x4<T> {
        TMat4x4 {
            data: [T::zero(); 16],
        }
    }

    ///
    /// Construct a new 4x4 identity matrix
    ///
    pub fn identity() -> TMat4x4<T> {
        let data: [T; 16] = [
            T::one(),
            T::zero(),
            T::zero(),
            T::zero(),
            T::zero(),
            T::one(),
            T::zero(),
            T::zero(),
            T::zero(),
            T::zero(),
            T::one(),
            T::zero(),
            T::zero(),
            T::zero(),
            T::zero(),
            T::one(),
        ];
        TMat4x4 { data }
    }

    ///
    /// Construct a new Vulkan compatible perspective transform matrix
    ///
    pub fn perspective(aspect: T, fov: T, near: T, far: T) -> TMat4x4<T> {
        let mut mat = TMat4x4::<T>::zero();

        let one = T::one();
        let two = one + one;

        let tan_half_fov = T::one() / (fov / two).tan();

        mat[(0, 0)] = tan_half_fov / aspect;
        mat[(1, 1)] = -tan_half_fov;
        mat[(2, 2)] = far / (far - near);
        mat[(2, 3)] = -(far * near) / (far - near);
        mat[(3, 2)] = one;

        mat
    }

    ///
    /// Construct a new translation matrix with the given translation
    ///
    pub fn translation(translation: TVec3<T>) -> TMat4x4<T> {
        let mut mat = TMat4x4::identity();
        mat[(0, 3)] = translation[0];
        mat[(1, 3)] = translation[1];
        mat[(2, 3)] = translation[2];

        mat
    }

    ///
    /// Apply a translation to this matrix
    ///
    pub fn translate(&mut self, translation: TVec3<T>) {
        let col_0 = self.get_column(0);
        let col_1 = self.get_column(1);
        let col_2 = self.get_column(2);
        let col_3 = self.get_column(3);

        let col_0 = col_0 * translation[0];
        let col_1 = col_1 * translation[1];
        let col_2 = col_2 * translation[2];

        let col_ref = self.get_column_ref_mut(3);
        *col_ref = col_0 + col_1 + col_2 + col_3;
    }

    ///
    /// Get an angle axis rotation matrix
    ///
    pub fn rotation(angle: T, axis: TVec3<T>) -> TMat4x4<T> {
        let mut out = TMat4x4::<T>::identity();
        out.rotate(angle, axis);
        out
    }

    ///
    /// Apply an angle axis rotation to this matrix
    ///
    pub fn rotate(&mut self, angle: T, in_axis: TVec3<T>) {
        let sin_angle = angle.sin();
        let cos_angle = angle.cos();

        let axis = in_axis.normalize();
        let temp: TVec3<T> = axis * (T::one() - cos_angle);

        let mut rot = TMat4x4::<T>::identity();

        rot[(0, 0)] = cos_angle + temp[0] * axis[0];
        rot[(0, 1)] = temp[0] * axis[1] + sin_angle * axis[2];
        rot[(0, 2)] = temp[0] * axis[2] - sin_angle * axis[1];

        rot[(1, 0)] = temp[1] * axis[0] - sin_angle * axis[2];
        rot[(1, 1)] = cos_angle + temp[1] * axis[1];
        rot[(1, 2)] = temp[1] * axis[2] + sin_angle * axis[0];

        rot[(2, 0)] = temp[2] * axis[0] + sin_angle * axis[1];
        rot[(2, 1)] = temp[2] * axis[1] - sin_angle * axis[0];
        rot[(2, 2)] = cos_angle + temp[2] * axis[2];

        let col_0 = self.get_column(0);
        let col_1 = self.get_column(1);
        let col_2 = self.get_column(2);

        let col_ref = self.get_column_ref_mut(0);
        *col_ref = col_0 * rot[(0, 0)] + col_1 * rot[(0, 1)] + col_2 * rot[(0, 2)];

        let col_ref = self.get_column_ref_mut(1);
        *col_ref = col_0 * rot[(1, 0)] + col_1 * rot[(1, 1)] + col_2 * rot[(1, 2)];

        let col_ref = self.get_column_ref_mut(2);
        *col_ref = col_0 * rot[(2, 0)] + col_1 * rot[(2, 1)] + col_2 * rot[(2, 2)];
    }

    ///
    /// Get a scaling matrix
    ///
    pub fn scaling(scale: TVec3<T>) -> TMat4x4<T> {
        let mut result = Self::identity();

        let col = result.get_column_ref_mut(0);
        *col = *col * scale[0];

        let col = result.get_column_ref_mut(1);
        *col = *col * scale[1];

        let col = result.get_column_ref_mut(2);
        *col = *col * scale[2];

        result
    }

    ///
    /// Apply scaling to the matrix
    ///
    pub fn scale(&mut self, scale: TVec3<T>) {
        let col = self.get_column_ref_mut(0);
        *col = *col * scale[0];

        let col = self.get_column_ref_mut(1);
        *col = *col * scale[1];

        let col = self.get_column_ref_mut(2);
        *col = *col * scale[2];
    }

    ///
    /// Construct a new matrix from the four columns passed into the function
    ///
    pub fn from_columns(col0: [T; 4], col1: [T; 4], col2: [T; 4], col3: [T; 4]) -> Self {
        let mut data = [T::zero(); 16];
        data[0..4].copy_from_slice(&col0);
        data[4..8].copy_from_slice(&col1);
        data[8..12].copy_from_slice(&col2);
        data[12..16].copy_from_slice(&col3);
        Self::new(data)
    }

    #[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
    #[inline]
    fn internal_apply(&self, vec: TVec4<T>) -> TVec4<T> {
        if T::is_f32() {
            simd_x86::simd_f32_apply(self, vec)
        } else {
            self.internal_apply_scalar(vec)
        }
    }

    #[cfg(not(any(target_arch = "x86", target_arch = "x86_64")))]
    #[inline]
    fn internal_apply(&self, vec: TVec4<T>) -> TVec4<T> {
        self.internal_apply_scalar(vec)
    }

    #[inline]
    fn internal_apply_scalar(&self, vec: TVec4<T>) -> TVec4<T> {
        let row0 = self.get_row(0);
        let row1 = self.get_row(1);
        let row2 = self.get_row(2);
        let row3 = self.get_row(3);

        let mut out = TVec4::<T>::zero();

        out[0] = row0.dot(&vec);
        out[1] = row1.dot(&vec);
        out[2] = row2.dot(&vec);
        out[3] = row3.dot(&vec);

        out
    }

    ///
    /// Apply this matrix to a vector, creating a new one in the process
    ///
    pub fn apply(&self, vec: TVec4<T>) -> TVec4<T> {
        self.internal_apply(vec)
    }

    ///
    /// Apply a matrix to the given vector
    ///
    pub fn apply_to(&self, rhs: &mut TVec4<T>) {
        *rhs = self.apply(*rhs)
    }

    ///
    /// Returns column refs as TVec4<T>s
    ///
    #[inline]
    fn as_columns_ref(&self) -> (&TVec4<T>, &TVec4<T>, &TVec4<T>, &TVec4<T>) {
        unsafe {
            (
                &*(&self.data[0] as *const T as *const TVec4<T>),
                &*(&self.data[4] as *const T as *const TVec4<T>),
                &*(&self.data[8] as *const T as *const TVec4<T>),
                &*(&self.data[12] as *const T as *const TVec4<T>),
            )
        }
    }

    ///
    /// Returns column mut refs as TVec4<T>s
    ///
    #[inline]
    fn as_columns_mut(&mut self) -> (&mut TVec4<T>, &mut TVec4<T>, &mut TVec4<T>, &mut TVec4<T>) {
        unsafe {
            (
                &mut *(&mut self.data[0] as *mut T as *mut TVec4<T>),
                &mut *(&mut self.data[4] as *mut T as *mut TVec4<T>),
                &mut *(&mut self.data[8] as *mut T as *mut TVec4<T>),
                &mut *(&mut self.data[12] as *mut T as *mut TVec4<T>),
            )
        }
    }
}

impl<T: Real> Column for TMat4x4<T> {
    type Output = TVec4<T>;

    #[inline]
    fn get_column(&self, col: usize) -> Self::Output {
        TVec4::new(
            self.data[(col * 4)],
            self.data[(col * 4) + 1],
            self.data[(col * 4) + 2],
            self.data[(col * 4) + 3],
        )
    }
}

impl<T: Real> ColumnRef for TMat4x4<T> {
    #[inline]
    fn get_column_ref(&self, col: usize) -> &Self::Output {
        unsafe { &*(&self.data[(col * 4)] as *const T as *const TVec4<T>) }
    }
}

impl<T: Real> ColumnRefMut for TMat4x4<T> {
    #[inline]
    fn get_column_ref_mut(&mut self, col: usize) -> &mut Self::Output {
        unsafe { &mut *(&mut self.data[(col * 4)] as *mut T as *mut TVec4<T>) }
    }
}

impl<T: Real> Row for TMat4x4<T> {
    type Output = TVec4<T>;

    #[inline]
    fn get_row(&self, row: usize) -> Self::Output {
        TVec4::new(
            self.data[row],
            self.data[row + 4],
            self.data[row + 8],
            self.data[row + 12],
        )
    }
}

impl<T: Real> Display for TMat4x4<T> {
    fn fmt(&self, f: &mut Formatter) -> Result<(), Error> {
        let precision = f.precision().unwrap_or(f.width().unwrap_or(4));
        for row in 0..4 {
            let row = self.get_row(row);
            let row_x = row[0];
            let row_y = row[1];
            let row_z = row[2];
            let row_w = row[3];
            writeln!(
                f,
                "    │ {:^width$} {:^width$} {:^width$} {:^width$} │",
                row_x,
                row_y,
                row_z,
                row_w,
                width = precision,
            )?;
        }

        Ok(())
    }
}

impl<T: Real> From<&[T; 16]> for TMat4x4<T> {
    #[inline]
    fn from(other: &[T; 16]) -> Self {
        TMat4x4::new(*other)
    }
}

impl<T: Real> Into<[T; 16]> for TMat4x4<T> {
    #[inline]
    fn into(self) -> [T; 16] {
        self.data
    }
}

impl<T: Real> Index<usize> for TMat4x4<T> {
    type Output = T;

    ///
    /// Index the matrix linearly
    ///
    #[inline]
    fn index(&self, index: usize) -> &Self::Output {
        &self.data[index]
    }
}

impl<T: Real> Index<(usize, usize)> for TMat4x4<T> {
    type Output = T;

    ///
    /// Index the matrix. (row, column)
    ///
    #[inline]
    fn index(&self, index: (usize, usize)) -> &Self::Output {
        let row = index.0;
        let col = index.1;
        &self.data[(col * 4) + row]
    }
}

impl<T: Real> IndexMut<usize> for TMat4x4<T> {
    ///
    /// Index the matrix linearly
    ///
    #[inline]
    fn index_mut(&mut self, index: usize) -> &mut Self::Output {
        &mut self.data[index]
    }
}

impl<T: Real> IndexMut<(usize, usize)> for TMat4x4<T> {
    ///
    /// Index the matrix. (row, column)
    ///
    #[inline]
    fn index_mut(&mut self, index: (usize, usize)) -> &mut Self::Output {
        let row = index.0;
        let col = index.1;
        &mut self.data[(col * 4) + row]
    }
}

impl<T: Real> Add<TMat4x4<T>> for TMat4x4<T> {
    type Output = Self;

    fn add(mut self, rhs: TMat4x4<T>) -> Self::Output {
        Self::add_assign(&mut self, rhs);
        self
    }
}

impl<T: Real> AddAssign<TMat4x4<T>> for TMat4x4<T> {
    fn add_assign(&mut self, rhs: TMat4x4<T>) {
        let (sv1, sv2, sv3, sv4) = self.as_columns_mut();
        let (rv1, rv2, rv3, rv4) = rhs.as_columns_ref();

        TVec4::add_assign(sv1, *rv1);
        TVec4::add_assign(sv2, *rv2);
        TVec4::add_assign(sv3, *rv3);
        TVec4::add_assign(sv4, *rv4);
    }
}

impl<T: Real> Sub<TMat4x4<T>> for TMat4x4<T> {
    type Output = Self;

    fn sub(mut self, rhs: TMat4x4<T>) -> Self::Output {
        Self::sub_assign(&mut self, rhs);
        self
    }
}

impl<T: Real> SubAssign<TMat4x4<T>> for TMat4x4<T> {
    fn sub_assign(&mut self, rhs: TMat4x4<T>) {
        let (sv1, sv2, sv3, sv4) = self.as_columns_mut();
        let (rv1, rv2, rv3, rv4) = rhs.as_columns_ref();

        TVec4::sub_assign(sv1, *rv1);
        TVec4::sub_assign(sv2, *rv2);
        TVec4::sub_assign(sv3, *rv3);
        TVec4::sub_assign(sv4, *rv4);
    }
}

impl<T: Real> Div<TMat4x4<T>> for TMat4x4<T> {
    type Output = Self;

    fn div(mut self, rhs: TMat4x4<T>) -> Self::Output {
        Self::div_assign(&mut self, rhs);
        self
    }
}

impl<T: Real> DivAssign<TMat4x4<T>> for TMat4x4<T> {
    fn div_assign(&mut self, rhs: TMat4x4<T>) {
        let (sv1, sv2, sv3, sv4) = self.as_columns_mut();
        let (rv1, rv2, rv3, rv4) = rhs.as_columns_ref();

        TVec4::div_assign(sv1, *rv1);
        TVec4::div_assign(sv2, *rv2);
        TVec4::div_assign(sv3, *rv3);
        TVec4::div_assign(sv4, *rv4);
    }
}

impl<T: Real> Mul<TMat4x4<T>> for TMat4x4<T> {
    type Output = Self;

    fn mul(mut self, rhs: TMat4x4<T>) -> Self::Output {
        Self::mul_assign(&mut self, rhs);
        self
    }
}

#[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
#[inline]
fn internal_mat4_mul_assign<T: Real>(lhs: &mut TMat4x4<T>, rhs: TMat4x4<T>) {
    if T::is_f32() {
        simd_x86::simd_f32_mul_assign(lhs, rhs);
    } else {
        internal_mat4_mul_assign_scalar(lhs, rhs);
    }
}

#[cfg(not(any(target_arch = "x86", target_arch = "x86_64")))]
#[inline]
fn internal_mat4_mul_assign<T: Real>(lhs: &mut TMat4x4<T>, rhs: TMat4x4<T>) {
    internal_mat4_mul_assign_scalar(lhs, rhs);
}

#[inline]
fn internal_mat4_mul_assign_scalar<T: Real>(lhs: &mut TMat4x4<T>, rhs: TMat4x4<T>) {
    let row0 = lhs.get_row(0);
    let row1 = lhs.get_row(1);
    let row2 = lhs.get_row(2);
    let row3 = lhs.get_row(3);
    let col0 = rhs.get_column(0);
    let col1 = rhs.get_column(1);
    let col2 = rhs.get_column(2);
    let col3 = rhs.get_column(3);

    {
        lhs[(0, 0)] = col0.dot(&row0);
        lhs[(0, 1)] = col1.dot(&row0);
        lhs[(0, 2)] = col2.dot(&row0);
        lhs[(0, 3)] = col3.dot(&row0);
    }
    {
        lhs[(1, 0)] = col0.dot(&row1);
        lhs[(1, 1)] = col1.dot(&row1);
        lhs[(1, 2)] = col2.dot(&row1);
        lhs[(1, 3)] = col3.dot(&row1);
    }
    {
        lhs[(2, 0)] = col0.dot(&row2);
        lhs[(2, 1)] = col1.dot(&row2);
        lhs[(2, 2)] = col2.dot(&row2);
        lhs[(2, 3)] = col3.dot(&row2);
    }
    {
        lhs[(3, 0)] = col0.dot(&row3);
        lhs[(3, 1)] = col1.dot(&row3);
        lhs[(3, 2)] = col2.dot(&row3);
        lhs[(3, 3)] = col3.dot(&row3);
    }
}

impl<T: Real> MulAssign<TMat4x4<T>> for TMat4x4<T> {
    fn mul_assign(&mut self, rhs: TMat4x4<T>) {
        internal_mat4_mul_assign(self, rhs)
    }
}

impl<T: Real> Mul<TVec4<T>> for TMat4x4<T> {
    type Output = TVec4<T>;

    fn mul(self, rhs: TVec4<T>) -> Self::Output {
        self.apply(rhs)
    }
}

impl<T: Real> MulAssign<T> for TMat4x4<T> {
    fn mul_assign(&mut self, rhs: T) {
        *self.get_column_ref_mut(0) *= rhs;
        *self.get_column_ref_mut(1) *= rhs;
        *self.get_column_ref_mut(2) *= rhs;
        *self.get_column_ref_mut(3) *= rhs;
    }
}

impl<T: Real> Mul<T> for TMat4x4<T> {
    type Output = TMat4x4<T>;

    fn mul(mut self, rhs: T) -> Self::Output {
        *self.get_column_ref_mut(0) *= rhs;
        *self.get_column_ref_mut(1) *= rhs;
        *self.get_column_ref_mut(2) *= rhs;
        *self.get_column_ref_mut(3) *= rhs;
        self
    }
}

impl<T: Real> PartialEq<TMat4x4<T>> for TMat4x4<T> {
    fn eq(&self, other: &TMat4x4<T>) -> bool {
        self.get_column_ref(0) == other.get_column_ref(0)
            && self.get_column_ref(1) == other.get_column_ref(1)
            && self.get_column_ref(2) == other.get_column_ref(2)
            && self.get_column_ref(3) == other.get_column_ref(3)
    }

    fn ne(&self, other: &TMat4x4<T>) -> bool {
        self.get_column_ref(0) != other.get_column_ref(0)
            || self.get_column_ref(1) != other.get_column_ref(1)
            || self.get_column_ref(2) != other.get_column_ref(2)
            || self.get_column_ref(3) != other.get_column_ref(3)
    }
}

impl<T: Real> Transpose for TMat4x4<T> {
    #[inline]
    fn transpose(mut self) -> Self {
        self.transpose_assign();
        self
    }
}

impl<T: Real> TransposeAssign for TMat4x4<T> {
    #[inline]
    fn transpose_assign(&mut self) {
        unsafe {
            ptr::swap(&mut self[(1, 0)], &mut self[(0, 1)]);
            ptr::swap(&mut self[(2, 1)], &mut self[(1, 2)]);
            ptr::swap(&mut self[(3, 2)], &mut self[(2, 3)]);

            ptr::swap(&mut self[(2, 0)], &mut self[(0, 2)]);
            ptr::swap(&mut self[(3, 0)], &mut self[(0, 3)]);
            ptr::swap(&mut self[(3, 1)], &mut self[(1, 3)]);
        }
    }
}

impl<T: Real> Inverse for TMat4x4<T> {
    fn inverse(self) -> Self {
        let mut m = self;

        let m_col0 = m.get_column(0);

        let coef00: T = m[(2, 2)] * m[(3, 3)] - m[(2, 3)] * m[(3, 2)];
        let coef02: T = m[(2, 1)] * m[(3, 3)] - m[(2, 3)] * m[(3, 1)];
        let coef03: T = m[(2, 1)] * m[(3, 2)] - m[(2, 2)] * m[(3, 1)];

        let coef04: T = m[(1, 2)] * m[(3, 3)] - m[(1, 3)] * m[(3, 2)];
        let coef06: T = m[(1, 1)] * m[(3, 3)] - m[(1, 3)] * m[(3, 1)];
        let coef07: T = m[(1, 1)] * m[(3, 2)] - m[(1, 2)] * m[(3, 1)];

        let coef08: T = m[(1, 2)] * m[(2, 3)] - m[(1, 3)] * m[(2, 2)];
        let coef10: T = m[(1, 1)] * m[(2, 3)] - m[(1, 3)] * m[(2, 1)];
        let coef11: T = m[(1, 1)] * m[(2, 2)] - m[(1, 2)] * m[(2, 1)];

        let coef12: T = m[(0, 2)] * m[(3, 3)] - m[(0, 3)] * m[(3, 2)];
        let coef14: T = m[(0, 1)] * m[(3, 3)] - m[(0, 3)] * m[(3, 1)];
        let coef15: T = m[(0, 1)] * m[(3, 2)] - m[(0, 2)] * m[(3, 1)];

        let coef16: T = m[(0, 2)] * m[(2, 3)] - m[(0, 3)] * m[(2, 2)];
        let coef18: T = m[(0, 1)] * m[(2, 3)] - m[(0, 3)] * m[(2, 1)];
        let coef19: T = m[(0, 1)] * m[(2, 2)] - m[(0, 2)] * m[(2, 1)];

        let coef20: T = m[(0, 2)] * m[(1, 3)] - m[(0, 3)] * m[(1, 2)];
        let coef22: T = m[(0, 1)] * m[(1, 3)] - m[(0, 3)] * m[(1, 1)];
        let coef23: T = m[(0, 1)] * m[(1, 2)] - m[(0, 2)] * m[(1, 1)];

        let fac0 = TVec4::<T>::new(coef00, coef00, coef02, coef03);
        let fac1 = TVec4::<T>::new(coef04, coef04, coef06, coef07);
        let fac2 = TVec4::<T>::new(coef08, coef08, coef10, coef11);
        let fac3 = TVec4::<T>::new(coef12, coef12, coef14, coef15);
        let fac4 = TVec4::<T>::new(coef16, coef16, coef18, coef19);
        let fac5 = TVec4::<T>::new(coef20, coef20, coef22, coef23);

        let vec0 = TVec4::<T>::new(m[(0, 1)], m[(0, 0)], m[(0, 0)], m[(0, 0)]);
        let vec1 = TVec4::<T>::new(m[(1, 1)], m[(1, 0)], m[(1, 0)], m[(1, 0)]);
        let vec2 = TVec4::<T>::new(m[(2, 1)], m[(2, 0)], m[(2, 0)], m[(2, 0)]);
        let vec3 = TVec4::<T>::new(m[(3, 1)], m[(3, 0)], m[(3, 0)], m[(3, 0)]);

        let inv0 = vec1 * fac0 - vec2 * fac1 + vec3 * fac2;
        let inv1 = vec0 * fac0 - vec2 * fac3 + vec3 * fac4;
        let inv2 = vec0 * fac1 - vec1 * fac3 + vec3 * fac5;
        let inv3 = vec0 * fac2 - vec1 * fac4 + vec2 * fac5;

        let sign_a = TVec4::<T>::new(T::one(), -T::one(), T::one(), -T::one());
        let sign_b = TVec4::<T>::new(-T::one(), T::one(), -T::one(), T::one());
        *m.get_column_ref_mut(0) = inv0 * sign_a;
        *m.get_column_ref_mut(1) = inv1 * sign_b;
        *m.get_column_ref_mut(2) = inv2 * sign_a;
        *m.get_column_ref_mut(3) = inv3 * sign_b;
        let inverse = m;

        let row0 = TVec4::<T>::new(
            inverse[(0, 0)],
            inverse[(0, 1)],
            inverse[(0, 2)],
            inverse[(0, 3)],
        );

        let dot0 = m_col0 * row0;
        let dot1: T = (dot0[0] + dot0[1]) + (dot0[2] + dot0[3]);

        let one_over_determinant = T::one() / dot1;

        inverse * one_over_determinant
    }
}

impl<T: Real> InverseAssign for TMat4x4<T> {
    fn inverse_assign(&mut self) {
        let m = self;

        let m_col0 = m.get_column(0);

        let coef00: T = m[(2, 2)] * m[(3, 3)] - m[(2, 3)] * m[(3, 2)];
        let coef02: T = m[(2, 1)] * m[(3, 3)] - m[(2, 3)] * m[(3, 1)];
        let coef03: T = m[(2, 1)] * m[(3, 2)] - m[(2, 2)] * m[(3, 1)];

        let coef04: T = m[(1, 2)] * m[(3, 3)] - m[(1, 3)] * m[(3, 2)];
        let coef06: T = m[(1, 1)] * m[(3, 3)] - m[(1, 3)] * m[(3, 1)];
        let coef07: T = m[(1, 1)] * m[(3, 2)] - m[(1, 2)] * m[(3, 1)];

        let coef08: T = m[(1, 2)] * m[(2, 3)] - m[(1, 3)] * m[(2, 2)];
        let coef10: T = m[(1, 1)] * m[(2, 3)] - m[(1, 3)] * m[(2, 1)];
        let coef11: T = m[(1, 1)] * m[(2, 2)] - m[(1, 2)] * m[(2, 1)];

        let coef12: T = m[(0, 2)] * m[(3, 3)] - m[(0, 3)] * m[(3, 2)];
        let coef14: T = m[(0, 1)] * m[(3, 3)] - m[(0, 3)] * m[(3, 1)];
        let coef15: T = m[(0, 1)] * m[(3, 2)] - m[(0, 2)] * m[(3, 1)];

        let coef16: T = m[(0, 2)] * m[(2, 3)] - m[(0, 3)] * m[(2, 2)];
        let coef18: T = m[(0, 1)] * m[(2, 3)] - m[(0, 3)] * m[(2, 1)];
        let coef19: T = m[(0, 1)] * m[(2, 2)] - m[(0, 2)] * m[(2, 1)];

        let coef20: T = m[(0, 2)] * m[(1, 3)] - m[(0, 3)] * m[(1, 2)];
        let coef22: T = m[(0, 1)] * m[(1, 3)] - m[(0, 3)] * m[(1, 1)];
        let coef23: T = m[(0, 1)] * m[(1, 2)] - m[(0, 2)] * m[(1, 1)];

        let fac0 = TVec4::<T>::new(coef00, coef00, coef02, coef03);
        let fac1 = TVec4::<T>::new(coef04, coef04, coef06, coef07);
        let fac2 = TVec4::<T>::new(coef08, coef08, coef10, coef11);
        let fac3 = TVec4::<T>::new(coef12, coef12, coef14, coef15);
        let fac4 = TVec4::<T>::new(coef16, coef16, coef18, coef19);
        let fac5 = TVec4::<T>::new(coef20, coef20, coef22, coef23);

        let vec0 = TVec4::<T>::new(m[(0, 1)], m[(0, 0)], m[(0, 0)], m[(0, 0)]);
        let vec1 = TVec4::<T>::new(m[(1, 1)], m[(1, 0)], m[(1, 0)], m[(1, 0)]);
        let vec2 = TVec4::<T>::new(m[(2, 1)], m[(2, 0)], m[(2, 0)], m[(2, 0)]);
        let vec3 = TVec4::<T>::new(m[(3, 1)], m[(3, 0)], m[(3, 0)], m[(3, 0)]);

        let inv0 = vec1 * fac0 - vec2 * fac1 + vec3 * fac2;
        let inv1 = vec0 * fac0 - vec2 * fac3 + vec3 * fac4;
        let inv2 = vec0 * fac1 - vec1 * fac3 + vec3 * fac5;
        let inv3 = vec0 * fac2 - vec1 * fac4 + vec2 * fac5;

        let sign_a = TVec4::<T>::new(T::one(), -T::one(), T::one(), -T::one());
        let sign_b = TVec4::<T>::new(-T::one(), T::one(), -T::one(), T::one());
        *m.get_column_ref_mut(0) = inv0 * sign_a;
        *m.get_column_ref_mut(1) = inv1 * sign_b;
        *m.get_column_ref_mut(2) = inv2 * sign_a;
        *m.get_column_ref_mut(3) = inv3 * sign_b;
        let inverse = m;

        let row0 = TVec4::<T>::new(
            inverse[(0, 0)],
            inverse[(0, 1)],
            inverse[(0, 2)],
            inverse[(0, 3)],
        );

        let dot0 = m_col0 * row0;
        let dot1: T = (dot0[0] + dot0[1]) + (dot0[2] + dot0[3]);

        let one_over_determinant = T::one() / dot1;

        inverse.mul_assign(one_over_determinant);
    }
}

pub mod std140 {
    use crate::matrix::TMat4x4;
    use crate::traits::{Pack, Real, Transpose};

    ///
    /// A wrapper struct that is used to implement std140 packing for the underlying vector
    ///
    #[repr(transparent)]
    #[derive(Clone, Debug)]
    pub struct TMat4x4P<T: Real>(TMat4x4<T>);

    impl<T: Real> From<TMat4x4<T>> for TMat4x4P<T> {
        fn from(other: TMat4x4<T>) -> Self {
            Self(other)
        }
    }

    impl<T: Real> Pack for TMat4x4P<T> {
        type GLSLOutput = [T; 16];
        type HLSLOutput = [T; 16];
        type GLSLOutputArray = Self::GLSLOutput;
        type HLSLOutputArray = Self::HLSLOutput;
        type CPUOutput = [T; 16];

        #[inline]
        fn into_packed_glsl(self) -> Self::GLSLOutput {
            self.0.data
        }

        #[inline]
        fn into_packed_hlsl(self) -> Self::HLSLOutput {
            self.0.transpose().data
        }

        #[inline]
        fn into_packed_glsl_array(self) -> Self::GLSLOutputArray {
            self.0.data
        }

        #[inline]
        fn into_packed_hlsl_array(self) -> Self::HLSLOutputArray {
            self.0.transpose().data
        }

        #[inline]
        fn into_packed_cpu(self) -> Self::CPUOutput {
            self.0.data
        }
    }
}

impl<T: Real> IntoSTD140 for TMat4x4<T> {
    type Output = std140::TMat4x4P<T>;

    fn into_std140(self) -> Self::Output {
        std140::TMat4x4P::from(self)
    }
}

#[cfg(test)]
pub mod tests;