Struct not_empty::NonEmptyVec
source · [−]#[repr(transparent)]pub struct NonEmptyVec<T> { /* private fields */ }alloc or std only.Expand description
A vector that is guaranteed to not be empty.
Deref Behavior
While NonEmptyVec<T> should be percieved as a smart pointer to a vector,
NonEmptyVec<T> does not dereference to a Vec<T>. Instead, it
dereferences to a NonEmptySlice<T>, which dereferences to
[T]. The vector methods present are manual implementations
or delegations that preserve the state of the non-empty vector.
Layout
The layout of a NonEmptyVec<T> is idential to Vec<T>.
Caveats
Because NonEmptyVec<T> does not dereference to a vector, using one
as a &Vec<T> parameter will require the use of as_vec to
“dereference” the NonEmptyVec<T> as a &Vec<T>. This is judged
as acceptable since &Vec<T> parameters are rare in the wild.
Also, while you can not collect a NonEmptyVec<T> using
Iterator::collect, you can collect a NonEmptyVec<T> with the
aid of IteratorExt.
However, unlike most other “not empty” libraries, all other interoperability is remained intact without the need for a new interface. While the previous two cases are incredibly minor, they still are worth listing and considering before you adopt usage.
Implementations
sourceimpl<T> NonEmptyVec<T>
impl<T> NonEmptyVec<T>
sourcepub unsafe fn empty() -> Self
pub unsafe fn empty() -> Self
This is an incredibly unsafe constructor.
This creates an empty NonEmptyVec<T>… You understand the risks
of that, right? If I could somehow write unsafe unsafe, it would be
appropriate here.
You can not use any methods inspecting the vector until you populate it with at least one element. To fail in doing so results in undefined behavior.
Unlike NonEmptyVec::new_unchecked, there’s no debug assertion. For
your sanity, I hope you know what you’re doing.
Safety
Using the non-empty vector before populating it is undefined behavior.
Examples
Do not do this:
use not_empty::NonEmptyVec;
let empty_nonempty = unsafe { NonEmptyVec::<i32>::empty() };
// Well, well, well. If it isn't the consequences of my actions.
let first = empty_nonempty.first(); // signal 4 (SIGILL); illegal instructionThis, however, is technically fine.
extern crate alloc;
use alloc::collections::TryReserveError;
use not_empty::prelude::*;
fn process_data(data: &NonEmptySlice<u32>) -> Result<NonEmptyVec<u32>, TryReserveError> {
let mut output = unsafe { NonEmptyVec::empty() };
// Pre-reserve the memory, exiting if we can't
output.try_reserve(data.len().get())?;
// Now we know this can't OOM in the middle of our complex work
output.extend(data.iter().map(|&val| {
val * 2 + 5 // very complicated
}));
Ok(output)
}sourcepub unsafe fn with_capacity(capacity: NonZeroUsize) -> Self
pub unsafe fn with_capacity(capacity: NonZeroUsize) -> Self
An incredibly unsafe constructor. Constructs a new, empty,
NonEmptyVec<T> with at least the specified capacity.
You can not use any methods inspecting the vector until you populate it with at least one element. To fail in doing so results in undefined behavior.
For more information on capacity, refer to Vec::with_capacity.
Panics
Panics if the new capacity exceeds isize::MAX bytes.
Safety
Using the non-empty vector before populating it is undefined behavior.
Examples
Do not do this:
use core::num::NonZeroUsize;
use not_empty::NonEmptyVec;
let ten = unsafe { NonZeroUsize::new_unchecked(10) };
let empty_nonempty = unsafe { NonEmptyVec::<i32>::with_capacity(ten) };
// Well, well, well. If it isn't the consequences of my actions.
let first = empty_nonempty.first(); // signal 4 (SIGILL); illegal instructionThis, however, is acceptable. However, be sure that it’s absolutely required first.
use core::num::NonZeroUsize;
use not_empty::NonEmptyVec;
let ten = unsafe { NonZeroUsize::new_unchecked(10) };
let mut nonempty = unsafe { NonEmptyVec::with_capacity(ten) };
// Inspecting capacity is literally the only safe operation at this
// point in the example.
assert!(nonempty.capacity().get() >= 10);
// These are all done without reallocating...
for i in 1..=10 {
nonempty.push(i);
}
// Further inspection is now okay since elements have been added:
assert_eq!(nonempty.len().get(), 10);
assert!(nonempty.capacity().get() >= 10);
// ... but this may make the vector reallocate
nonempty.push(11);
assert_eq!(nonempty.len().get(), 11);
assert!(nonempty.capacity().get() >= 11);
// A vector of a zero-sized type will always over-allocate, since no
// allocation is necessary.
let vec_units: NonEmptyVec<()> = unsafe { NonEmptyVec::with_capacity(ten) };
assert_eq!(vec_units.capacity().get(), usize::MAX);sourcepub unsafe fn new_unchecked(vec: Vec<T>) -> Self
pub unsafe fn new_unchecked(vec: Vec<T>) -> Self
Creates a new non-empty vector without checking if the given vector is not empty.
This is a cost-free conversion.
Safety
The vector must not be empty.
Examples
Basic usage:
use not_empty::NonEmptyVec;
let vec = vec![1, 2, 3];
let nonempty: NonEmptyVec<_> = unsafe { NonEmptyVec::new_unchecked(vec) };For your convenience, consider using
not_empty_vec! instead:
use not_empty::not_empty_vec;
let nonempty = not_empty_vec![1, 2, 3];sourcepub fn new(vec: Vec<T>) -> Result<Self, EmptyError>
pub fn new(vec: Vec<T>) -> Result<Self, EmptyError>
Creates a new non-empty vector if the given vector is not empty.
Errors
Returns an EmptyError if the given vector is empty.
Examples
Basic usage:
use not_empty::NonEmptyVec;
let vec = vec![1, 2, 3];
let nonempty: NonEmptyVec<_> = NonEmptyVec::new(vec)?;
assert!(nonempty.len().get() == 3);
let empty: Vec<i32> = vec![];
assert!(NonEmptyVec::new(empty).is_err());sourcepub unsafe fn from_raw_parts(
ptr: *mut T,
length: NonZeroUsize,
capacity: NonZeroUsize
) -> Self
pub unsafe fn from_raw_parts(
ptr: *mut T,
length: NonZeroUsize,
capacity: NonZeroUsize
) -> Self
Creates a NonEmptyVec<T> directly from the raw components of another
vector.
Safety
This is highly unsafe, due to the number of invariants that aren’t checked:
ptrneeds to have been previously allocated viaString/Vec<T>(at least, it’s highly likely to be incorrect if it wasn’t.)Tneeds to have the same alignment as whatptrwas allocated with. (Thaving a less strict alignment is not sufficient, the alignment really needs to be equal to satisfy thedeallocrequirement that memory must be allocated and deallocated with the same layout.)- The size of
Ttimes thecapacity(ie. the allocated size in bytes) needs to be the same size as the pointer was allocated with. (Because similar to alignment,deallocmust be called with the same layoutsize.) lengthneeds to be less than or equal tocapacity.
Violating these may cause problems like corrupting the allocator’s
internal data structures. For example it is normally not safe
to build a NonEmptyVec<u8> from a pointer to a C char array with
length size_t, doing so is only safe if the array was initially
allocated by a Vec or String. It’s also not safe to build one from a
NonEmptyVec<u16> and its length, because the allocator cares about the
alignment, and these two types have different alignments. The buffer was
allocated with alignment 2 (for u16), but after turning it into a
NonEmptyVec<u8> it’ll be deallocated with alignment 1. To avoid these
issues, it is often preferable to do casting/transmuting using
slice::from_raw_parts instead.
The ownership of ptr is effectively transferred to the
NonEmptyVec<T> which may then deallocate, reallocate or change the
contents of memory pointed to by the pointer at will. Ensure
that nothing else uses the pointer after calling this
function.
sourcepub fn as_vec(&self) -> &Vec<T>ⓘNotable traits for Vec<u8, A>impl<A> Write for Vec<u8, A>where
A: Allocator,
pub fn as_vec(&self) -> &Vec<T>ⓘNotable traits for Vec<u8, A>impl<A> Write for Vec<u8, A>where
A: Allocator,
A: Allocator,
Returns a reference to the underlying vector.
Examples
Basic usage:
fn needs_vec_ref(vec: &Vec<i32>) {
// ...
}
let nonempty = not_empty::vec![1, 2, 3];
needs_vec_ref(nonempty.as_vec());sourcepub fn into_vec(self) -> Vec<T>ⓘNotable traits for Vec<u8, A>impl<A> Write for Vec<u8, A>where
A: Allocator,
pub fn into_vec(self) -> Vec<T>ⓘNotable traits for Vec<u8, A>impl<A> Write for Vec<u8, A>where
A: Allocator,
A: Allocator,
Converts the NonEmptyVec<T> back into a Vec<T>.
Examples
Basic usage:
fn needs_vec(vec: Vec<i32>) {
// ...
}
let nonempty = not_empty::vec![1, 2, 3];
needs_vec(nonempty.into_vec());sourcepub fn capacity(&self) -> NonZeroUsize
pub fn capacity(&self) -> NonZeroUsize
Returns the number of elements the vector can hold without reallocating.
Unlike Vec::capacity, this returns a NonZeroUsize instead of
a usize.
Examples
let nonempty = not_empty::vec![1, 2, 3];
assert!(nonempty.capacity().get() == 3);sourcepub fn reserve(&mut self, additional: usize)
Available on non-no_global_oom_handling only.
pub fn reserve(&mut self, additional: usize)
no_global_oom_handling only.Reserves capacity for at least additional more elements to be inserted
in the given NonEmptyVec<T>. The collection may reserve more space to
speculatively avoid frequent reallocations. After calling reserve,
capacity will be greater than or equal to self.len() + additional.
Does nothing if capacity is already sufficient.
For more information, refer to Vec::reserve.
Panics
Panics if the new capacity exceeds isize::MAX bytes.
Examples
let mut nonempty = not_empty::vec![1];
nonempty.reserve(10);
assert!(nonempty.capacity().get() >= 11);sourcepub fn reserve_exact(&mut self, additional: usize)
Available on non-no_global_oom_handling only.
pub fn reserve_exact(&mut self, additional: usize)
no_global_oom_handling only.Reserves the minimum capacity for at least additional more elements to
be inserted in the given NonEmptyVec<T>. Unlike reserve, this will
not deliberately over-allocate to speculatively avoid frequent
allocations. After calling reserve_exact, capacity will be greater
than or equal to self.len() + additional. Does nothing if the capacity
is already sufficient.
Note that the allocator may give the collection more space than it
requests. Therefore, capacity can not be relied upon to be precisely
minimal. Prefer reserve if future insertions are expected.
For more information, refer to Vec::reserve_exact
Panics
Panics if the new capacity exceeds isize::MAX bytes.
Examples
let mut nonempty = not_empty::vec![1];
nonempty.reserve_exact(10);
assert!(nonempty.capacity().get() >= 11);sourcepub fn try_reserve(&mut self, additional: usize) -> Result<(), TryReserveError>
pub fn try_reserve(&mut self, additional: usize) -> Result<(), TryReserveError>
Tries to reserve capacity for at least additional more elements to be
inserted in the given NonEmptyVec<T>. The collection may reserve more
space to speculatively avoid frequent reallocations. After calling
try_reserve, capacity will be greater than or equal to
self.len() + additional if it returns Ok(()). Does nothing if
capacity is already sufficient.
For more information, refer to Vec::try_reserve.
Errors
If the capacity overflows, or the allocator reports a failure, then an error is returned.
Examples
use alloc::collections::TryReserveError;
use not_empty::prelude::*;
fn process_data(data: &NonEmptySlice<u32>) -> Result<NonEmptyVec<u32>, TryReserveError> {
let mut output = unsafe { NonEmptyVec::empty() };
// Pre-reserve the memory, exiting if we can't
output.try_reserve(data.len().get())?;
// Now we know this can't OOM in the middle of our complex work
output.extend(data.iter().map(|&val| {
val * 2 + 5 // very complicated
}));
Ok(output)
}sourcepub fn try_reserve_exact(
&mut self,
additional: usize
) -> Result<(), TryReserveError>
pub fn try_reserve_exact(
&mut self,
additional: usize
) -> Result<(), TryReserveError>
Tries to reserve the minimum capacity for at least additional
elements to be inserted in the given Vec<T>. Unlike try_reserve,
this will not deliberately over-allocate to speculatively avoid frequent
allocations. After calling try_reserve_exact, capacity will be greater
than or equal to self.len() + additional if it returns Ok(()).
Does nothing if the capacity is already sufficient.
Note that the allocator may give the collection more space than it
requests. Therefore, capacity can not be relied upon to be precisely
minimal. Prefer try_reserve if future insertions are expected.
Errors
If the capacity overflows, or the allocator reports a failure, then an error is returned.
Examples
use alloc::collections::TryReserveError;
use not_empty::prelude::*;
fn process_data(data: &NonEmptySlice<u32>) -> Result<NonEmptyVec<u32>, TryReserveError> {
let mut output = unsafe { NonEmptyVec::empty() };
// Pre-reserve the memory, exiting if we can't
output.try_reserve_exact(data.len().get())?;
// Now we know this can't OOM in the middle of our complex work
output.extend(data.iter().map(|&val| {
val * 2 + 5 // very complicated
}));
Ok(output)
}sourcepub fn shrink_to_fit(&mut self)
Available on non-no_global_oom_handling only.
pub fn shrink_to_fit(&mut self)
no_global_oom_handling only.Shrinks the capacity of the vector as much as possible.
It will drop down as close as possible to the length but the allocator may still inform the vector that there is space for a few more elements.
For more information, refer to Vec::shrink_to_fit.
Examples
use core::num::NonZeroUsize;
use not_empty::NonEmptyVec;
let mut nonempty = unsafe { NonEmptyVec::with_capacity(NonZeroUsize::new_unchecked(10)) };
nonempty.extend([1, 2, 3]);
assert_eq!(nonempty.capacity().get(), 10);
nonempty.shrink_to_fit();
assert!(nonempty.capacity().get() >= 3);sourcepub fn shrink_to(&mut self, min_capacity: usize)
Available on non-no_global_oom_handling only.
pub fn shrink_to(&mut self, min_capacity: usize)
no_global_oom_handling only.Shrinks the capacity of the vector with a lower bound.
The capacity will remain at least as large as both the length and the supplied value.
If the current capacity is less than the lower limit, this is a no-op.
For more information, refer to Vec::shrink_to.
Examples
use core::num::NonZeroUsize;
use not_empty::NonEmptyVec;
let mut nonempty = unsafe { NonEmptyVec::with_capacity(NonZeroUsize::new_unchecked(10)) };
nonempty.extend([1, 2, 3]);
assert_eq!(nonempty.capacity().get(), 10);
nonempty.shrink_to(4);
assert!(nonempty.capacity().get() >= 4);
nonempty.shrink_to(0);
assert!(nonempty.capacity().get() >= 3);sourcepub fn into_boxed_slice(self) -> Box<NonEmptySlice<T>>ⓘNotable traits for Box<R, Global>impl<R> Read for Box<R, Global>where
R: Read + ?Sized,impl<W> Write for Box<W, Global>where
W: Write + ?Sized,impl<I, A> Iterator for Box<I, A>where
I: Iterator + ?Sized,
A: Allocator, type Item = <I as Iterator>::Item;impl<F, A> Future for Box<F, A>where
F: Future + Unpin + ?Sized,
A: Allocator + 'static, type Output = <F as Future>::Output;
Available on non-no_global_oom_handling only.
pub fn into_boxed_slice(self) -> Box<NonEmptySlice<T>>ⓘNotable traits for Box<R, Global>impl<R> Read for Box<R, Global>where
R: Read + ?Sized,impl<W> Write for Box<W, Global>where
W: Write + ?Sized,impl<I, A> Iterator for Box<I, A>where
I: Iterator + ?Sized,
A: Allocator, type Item = <I as Iterator>::Item;impl<F, A> Future for Box<F, A>where
F: Future + Unpin + ?Sized,
A: Allocator + 'static, type Output = <F as Future>::Output;
R: Read + ?Sized,impl<W> Write for Box<W, Global>where
W: Write + ?Sized,impl<I, A> Iterator for Box<I, A>where
I: Iterator + ?Sized,
A: Allocator, type Item = <I as Iterator>::Item;impl<F, A> Future for Box<F, A>where
F: Future + Unpin + ?Sized,
A: Allocator + 'static, type Output = <F as Future>::Output;
no_global_oom_handling only.Converts this NonEmptyVec<T> into Box<NonEmptySlice<T>>.
This will drop any excess capacity.
Examples
Basic usage:
let nonempty = not_empty::vec![1, 2, 3];
let slice = nonempty.into_boxed_slice();Any excess capacity is removed:
use core::num::NonZeroUsize;
use not_empty::{NonEmptySlice, NonEmptyVec};
let mut nonempty = unsafe { NonEmptyVec::with_capacity(NonZeroUsize::new_unchecked(10)) };
nonempty.extend([1, 2 ,3]);
assert_eq!(nonempty.capacity().get(), 10);
let slice: Box<NonEmptySlice<_>> = nonempty.into_boxed_slice();
assert_eq!(slice.into_vec().capacity().get(), 3);sourcepub fn truncate(&mut self, len: NonZeroUsize)
pub fn truncate(&mut self, len: NonZeroUsize)
Shortens the vector, keeping the first len elements and dropping the
rest.
If len is greater than the vector’s current length, this has no
effect.
The drain method can emulate truncate, but
causes the excess elements to be returned instead of dropped.
This method has no effect on the allocated capacity of the vector.
Examples
Truncating a five element vector to two elements:
use core::num::NonZeroUsize;
let mut vec = not_empty::vec![1, 2, 3, 4, 5];
vec.truncate(unsafe { NonZeroUsize::new_unchecked(2) });
assert_eq!(vec, [1, 2]);No truncation occurs when len is greater than the vector’s current
length:
use core::num::NonZeroUsize;
let mut vec = not_empty::vec![1, 2, 3];
vec.truncate(unsafe { NonZeroUsize::new_unchecked(8) });
assert_eq!(vec, [1, 2, 3]);sourcepub fn as_slice(&self) -> &NonEmptySlice<T>
pub fn as_slice(&self) -> &NonEmptySlice<T>
Extracts a NonEmptySlice containing the entire vector.
sourcepub fn as_mut_slice(&mut self) -> &mut NonEmptySlice<T>
pub fn as_mut_slice(&mut self) -> &mut NonEmptySlice<T>
Extracts a mutable NonEmptySlice containing the entire vector.
sourcepub fn as_ptr(&self) -> *const T
pub fn as_ptr(&self) -> *const T
Returns a raw pointer to the vector’s buffer, or a dangling raw pointer valid for zero sized reads if the vector didn’t allocate.
For more information, refer to Vec::as_ptr.
sourcepub fn as_mut_ptr(&mut self) -> *mut T
pub fn as_mut_ptr(&mut self) -> *mut T
Returns an unsafe mutable pointer to the vector’s buffer, or a dangling raw pointer valid for zero sized reads if the vector didn’t allocate.
For more information, refer to Vec::as_mut_ptr.
sourcepub unsafe fn set_len(&mut self, new_len: NonZeroUsize)
pub unsafe fn set_len(&mut self, new_len: NonZeroUsize)
Forces the length of the vector to new_len.
For more information, refer to Vec::set_len.
Safety
new_lenmust be less than or equal tocapacity().- The elements at
old_len..new_lenmust be initialized.
sourcepub unsafe fn swap_remove(&mut self, index: usize) -> T
pub unsafe fn swap_remove(&mut self, index: usize) -> T
Removes an element from the vector and returns it.
The removed element is replaced by the last element of the vector..
This does not preserve ordering, but is O(1). If you need to preserve
the element order, use remove instead.
Panics
Panics if index is out of bounds.
Safety
This can not leave the NonEmptyVec empty. If it does, on debug
builds, it will panic. Otherwise, it is undefined behavior. Consider
whether or not a NonEmptyVec is really the right choice for your
application.
sourcepub fn insert(&mut self, index: usize, element: T)
Available on non-no_global_oom_handling only.
pub fn insert(&mut self, index: usize, element: T)
no_global_oom_handling only.Inserts an element at position index within the vector, shifting all
elements after it to the right.
For more information, refer to Vec::insert.
Panics
Panics if index > len.
sourcepub unsafe fn remove(&mut self, index: usize) -> T
pub unsafe fn remove(&mut self, index: usize) -> T
Removes and returns the element at position index within the vector,
shifting all elements after it to the left.
Because this shifts over the remaining elements, it has a worst-case
performance of O(n). If you don’t need the order of elements
to be preserved, use swap_remove instead.
For more information, refer to Vec::swap_remove.
Panics
Panics if index is out of bounds.
Safety
This can not leave the NonEmptyVec empty. If it does, on debug
builds, it will panic. Otherwise, it is undefined behavior. Consider
whether or not a NonEmptyVec is really the right choice for your
application.
sourcepub unsafe fn retain<F>(&mut self, f: F)where
F: FnMut(&T) -> bool,
pub unsafe fn retain<F>(&mut self, f: F)where
F: FnMut(&T) -> bool,
Retains only the elements specified by the predicate.
In other words, remove all elements e for which f(&e) returns false.
This method operates in place, visiting each element exactly once in the
original order, and preserves the order of the retained elements.
For more information, refer to Vec::retain.
Safety
This can not leave the NonEmptyVec empty. If it does, on debug
builds, it will panic. Otherwise, it is undefined behavior. Consider
whether or not a NonEmptyVec is really the right choice for your
application.
sourcepub unsafe fn retain_mut<F>(&mut self, f: F)where
F: FnMut(&mut T) -> bool,
pub unsafe fn retain_mut<F>(&mut self, f: F)where
F: FnMut(&mut T) -> bool,
Retains only the elements specified by the predicate, passing a mutable reference to it.
In other words, remove all elements e such that f(&mut e) returns
false. This method operates in place, visiting each element exactly
once in the original order, and preserves the order of the retained
elements.
For more information, refer to Vec::retain_mut.
Safety
This can not leave the NonEmptyVec empty. If it does, on debug
builds, it will panic. Otherwise, it is undefined behavior. Consider
whether or not a NonEmptyVec is really the right choice for your
application.
sourcepub fn dedup_by_key<F, K>(&mut self, key: F)where
F: FnMut(&mut T) -> K,
K: PartialEq,
pub fn dedup_by_key<F, K>(&mut self, key: F)where
F: FnMut(&mut T) -> K,
K: PartialEq,
Removes all but the first of consecutive elements in the vector that resolve to the same key.
If the vector is sorted, this removes all duplicates.
For more information, refer to Vec::dedup_by_key.
sourcepub fn dedup_by<F>(&mut self, same_bucket: F)where
F: FnMut(&mut T, &mut T) -> bool,
pub fn dedup_by<F>(&mut self, same_bucket: F)where
F: FnMut(&mut T, &mut T) -> bool,
Removes all but the first of consecutive elements in the vector satisfying a given equality relation.
The same_bucket function is passed references to two elements from the
vector and must determine if the elements compare equal. The elements
are passed in opposite order from their order in the slice, so if
same_bucket(a, b) returns true, a is removed.
If the vector is sorted, this removes all duplicates.
For more information, refer to Vec::dedup_by.
sourcepub fn push(&mut self, value: T)
Available on non-no_global_oom_handling only.
pub fn push(&mut self, value: T)
no_global_oom_handling only.Appends an element to the back of a collection.
For more information, refer to Vec::push.
Panics
Panics if the new capacity exceeds isize::MAX bytes.
sourcepub unsafe fn pop(&mut self) -> T
pub unsafe fn pop(&mut self) -> T
Removes the last element from a vector and returns it.
Unlike Vec::pop, this is never an Option.
Safety
This can not leave the NonEmptyVec empty. If it does, on debug
builds, it will panic. Otherwise, it is undefined behavior. Consider
whether or not a NonEmptyVec is really the right choice for your
application.
sourcepub fn append(&mut self, other: &mut Vec<T>)
Available on non-no_global_oom_handling only.
pub fn append(&mut self, other: &mut Vec<T>)
no_global_oom_handling only.Moves all the elements of other into self, leaving other empty.
For more information, refer to Vec::append.
Panics
Panics if the new capacity exceeds isize::MAX bytes.
sourcepub unsafe fn drain<R>(&mut self, range: R) -> Drain<'_, T>ⓘNotable traits for Drain<'_, T, A>impl<T, A> Iterator for Drain<'_, T, A>where
A: Allocator, type Item = T;where
R: RangeBounds<usize>,
pub unsafe fn drain<R>(&mut self, range: R) -> Drain<'_, T>ⓘNotable traits for Drain<'_, T, A>impl<T, A> Iterator for Drain<'_, T, A>where
A: Allocator, type Item = T;where
R: RangeBounds<usize>,
A: Allocator, type Item = T;
Removes the specified range from the vector in bulk, returning all removed elements as an iterator. If the iterator is dropped before being fully consumed, it drops the remaining removed elements.
The returned iterator keeps a mutable borrow on the vector to optimize its implementation.
Panics
Panics if the starting point is greater than the end point or if the end point is greater than the length of the vector.
Safety
This can not leave the NonEmptyVec empty. If it does, on debug
builds, it will panic. Otherwise, it is undefined behavior. Consider
whether or not a NonEmptyVec is really the right choice for your
application.
Leaking
If the returned iterator goes out of scope without being dropped (due to
mem::forget, for example), the vector may have lost and leaked
elements arbitrarily, including elements outside the range.
sourcepub fn len(&self) -> NonZeroUsize
pub fn len(&self) -> NonZeroUsize
Returns the number of elements in the vector, also referred to as its ‘length’.
Unlike Vec::len, this returrns a NonZeroUsize.
For more information, refer to Vec::len.
Examples
Basic usage:
let a = not_empty::vec![1, 2, 3];
assert_eq!(a.len().get(), 3);sourcepub fn split_off(&mut self, at: NonZeroUsize) -> Vec<T>ⓘNotable traits for Vec<u8, A>impl<A> Write for Vec<u8, A>where
A: Allocator,
Available on non-no_global_oom_handling only.
pub fn split_off(&mut self, at: NonZeroUsize) -> Vec<T>ⓘNotable traits for Vec<u8, A>impl<A> Write for Vec<u8, A>where
A: Allocator,
A: Allocator,
no_global_oom_handling only.Splits the collection into two at the given index.
Returns a newly allocated vector containing the elements in the range
[at, len). After the call, the original vector will be left containing
the elements [0, at) with its previous capacity unchanged.
Unlike Vec::split_off, it’s impossible to split at index zero.
Panics
Panics if at > len.
sourcepub fn resize_with<F>(&mut self, new_len: NonZeroUsize, f: F)where
F: FnMut() -> T,
Available on non-no_global_oom_handling only.
pub fn resize_with<F>(&mut self, new_len: NonZeroUsize, f: F)where
F: FnMut() -> T,
no_global_oom_handling only.Resizes the NonEmptyVec in-place so that len is equal to new_len.
If new_len is greater than len, the NonEmptyVec is extended by the
difference, with each additional slot filled with the result of
calling the closure f. The return values from f will end up
in the NonEmptyVec in the order they have been generated.
If new_len is less than len, the NonEmptyVec is simply truncated.
This method uses a closure to create new values on every push. If
you’d rather Clone a given value, use NonEmptyVec::resize. If
you want to use the Default trait to generate values, you can
pass Default::default as the second argument.
For more information, refer to Vec::resize_with.
sourcepub fn leak<'a>(self) -> &'a mut NonEmptySlice<T>
Available on non-no_global_oom_handling only.
pub fn leak<'a>(self) -> &'a mut NonEmptySlice<T>
no_global_oom_handling only.Consumes and leaks the NonEmptyVec, returning a mutable reference to
the contents, &'a mut NonEmptySlice<T>. Note that the type T must
outlive the chosen lifetime 'a. If the type has only static
references, or none at all, then this may be chosen to be 'static.
As of Rust 1.57, this method does not reallocate or shrink the
NonEmptyVec, so the leaked allocation may include unused capacity that
is not part of the returned slice.
This function is mainly useful for data that lives for the remainder of the program’s life. Dropping the returned reference will cause a memory leak.
For more information, refer to Vec::leak.
sourcepub fn spare_capacity_mut(&mut self) -> &mut [MaybeUninit<T>]
pub fn spare_capacity_mut(&mut self) -> &mut [MaybeUninit<T>]
Returns the remaining spare capacity of the vector as a slice of
MaybeUninit<T>.
For more information, refer to Vec::spare_capacity_mut.
sourceimpl<T: Clone> NonEmptyVec<T>
impl<T: Clone> NonEmptyVec<T>
sourcepub fn resize(&mut self, new_len: NonZeroUsize, value: T)
Available on non-no_global_oom_handling only.
pub fn resize(&mut self, new_len: NonZeroUsize, value: T)
no_global_oom_handling only.Resizes the NonEmptyVec in-place so that len is equal to new_len.
If new_len is greater than len, the NonEmptyVec is extended by the
difference, with each additional slot filled with value.
If new_len is less than len, the NonEmptyVec is simply truncated.
This method requires T to implement Clone,
in order to be able to clone the passed value.
If you need more flexibility (or want to rely on Default instead of
Clone), use NonEmptyVec::resize_with.
If you only need to resize to a smaller size, use
NonEmptyVec::truncate.
For more information, refer to Vec::resize.
sourcepub fn extend_from_slice(&mut self, other: &[T])
Available on non-no_global_oom_handling only.
pub fn extend_from_slice(&mut self, other: &[T])
no_global_oom_handling only.Clones and appends all elements in a slice to the NonEmptyVec.
Iterates over the slice other, clones each element, and then appends
it to this NonEmptyVec. The other slice is traversed in-order.
Note that this function is same as extend except that it is
specialized to work with slices instead. If and when Rust gets
specialization this function will likely be deprecated (but still
available).
For more information, refer to Vec::extend_from_slice.
sourcepub fn extend_from_within<R>(&mut self, src: R)where
R: RangeBounds<usize>,
Available on non-no_global_oom_handling only.
pub fn extend_from_within<R>(&mut self, src: R)where
R: RangeBounds<usize>,
no_global_oom_handling only.Copies elements from src range to the end of the vector.
For more information, refer to Vec::extend_from_within.
Panics
Panics if the starting point is greater than the end point or if the end point is greater than the length of the vector.
sourceimpl<T: PartialEq> NonEmptyVec<T>
impl<T: PartialEq> NonEmptyVec<T>
sourcepub fn dedup(&mut self)
pub fn dedup(&mut self)
Removes consecutive repeated elements in the vector according to the
PartialEq trait implementation.
If the vector is sorted, this removes all duplicates.
For more information, refer to Vec::dedup.
Methods from Deref<Target = NonEmptySlice<T>>
sourcepub fn len(&self) -> NonZeroUsize
pub fn len(&self) -> NonZeroUsize
Returns the number of elements in the slice.
Unlike slice::len, this returns a NonZeroUsize instead of a
usize.
Examples
Basic usage:
use core::num::NonZeroUsize;
use not_empty::NonEmptySlice;
let slice = &[1, 2, 3];
let nonempty = NonEmptySlice::new(slice)?;
assert_eq!(nonempty.len(), NonZeroUsize::new(3).unwrap());sourcepub fn is_empty(&self) -> bool
pub fn is_empty(&self) -> bool
A method which always returns true.
Unlike a normal slice, this slice is never empty. It’s incredibly likely that, if you are using this check, it is absolutely unnecessary.
sourcepub fn first(&self) -> &T
pub fn first(&self) -> &T
Returns the first element of the slice.
Unlike slice::first, this does not return an Option.
Examples
Basic usage:
use not_empty::NonEmptySlice;
let slice = &[1, 2, 3];
let nonempty = NonEmptySlice::new(slice)?;
assert_eq!(nonempty.first(), &1);sourcepub fn first_mut(&mut self) -> &mut T
pub fn first_mut(&mut self) -> &mut T
Returns a mutable pointer to the first element of the slice.
Unlike slice::first_mut, this does not return an Option.
Examples
Basic usage:
use not_empty::NonEmptySlice;
let slice = &mut [0, 1, 2];
let nonempty = NonEmptySlice::new_mut(slice)?;
*nonempty.first_mut() = 5;
assert_eq!(nonempty, &[5, 1, 2]);sourcepub fn split_first(&self) -> (&T, &[T])
pub fn split_first(&self) -> (&T, &[T])
Returns the first and all the rest of the elements of the slice.
Unlike slice::split_first, this does not return an Option.
Examples
Basic usage:
use not_empty::NonEmptySlice;
let slice = &[0, 1, 2];
let nonempty = NonEmptySlice::new(slice)?;
let (first, elements) = nonempty.split_first();
assert_eq!(first, &0);
assert_eq!(elements, &[1, 2]);sourcepub fn split_first_mut(&mut self) -> (&mut T, &mut [T])
pub fn split_first_mut(&mut self) -> (&mut T, &mut [T])
Returns the first and all the rest of the elements of the slice.
Unlike slice::split_first_mut, this does not return an Option.
Examples
Basic usage:
use not_empty::NonEmptySlice;
let slice = &mut [0, 1, 2];
let nonempty = NonEmptySlice::new_mut(slice)?;
let (first, elements) = nonempty.split_first_mut();
*first = 3;
elements[0] = 4;
elements[1] = 5;
assert_eq!(slice, &[3, 4, 5]);sourcepub fn last(&self) -> &T
pub fn last(&self) -> &T
Returns the last element of the slice.
Unlike slice::last, this does not return an Option.
Examples
Basic usage:
use not_empty::NonEmptySlice;
let slice = &[1, 2, 3];
let nonempty = NonEmptySlice::new(slice)?;
assert_eq!(nonempty.last(), &3);sourcepub fn last_mut(&mut self) -> &mut T
pub fn last_mut(&mut self) -> &mut T
Returns a mutable pointer to the last element of the slice.
Unlike slice::last_mut, this does not return an Option.
Examples
Basic usage:
use not_empty::NonEmptySlice;
let slice = &mut [0, 1, 2];
let nonempty = NonEmptySlice::new_mut(slice)?;
*nonempty.last_mut() = 10;
assert_eq!(nonempty, &[0, 1, 10]);sourcepub fn split_last(&self) -> (&T, &[T])
pub fn split_last(&self) -> (&T, &[T])
Returns the last and all the rest of the elements of the slice.
Unlike slice::split_last, this does not return an Option.
Examples
Basic usage:
use not_empty::NonEmptySlice;
let slice = &[0, 1, 2];
let nonempty = NonEmptySlice::new(slice)?;
let (last, elements) = nonempty.split_last();
assert_eq!(last, &2);
assert_eq!(elements, &[0, 1]);sourcepub fn split_last_mut(&mut self) -> (&mut T, &mut [T])
pub fn split_last_mut(&mut self) -> (&mut T, &mut [T])
Returns the last and all the rest of the elements of the slice.
Unlike slice::split_last_mut, this does not return an Option.
Examples
Basic usage:
use not_empty::NonEmptySlice;
let slice = &mut [0, 1, 2];
let nonempty = NonEmptySlice::new_mut(slice)?;
let (last, elements) = nonempty.split_last_mut();
*last = 3;
elements[0] = 4;
elements[1] = 5;
assert_eq!(slice, &[4, 5, 3]);sourcepub fn to_vec(&self) -> NonEmptyVec<T>ⓘNotable traits for NonEmptyVec<u8>impl Write for NonEmptyVec<u8>where
T: Clone,
pub fn to_vec(&self) -> NonEmptyVec<T>ⓘNotable traits for NonEmptyVec<u8>impl Write for NonEmptyVec<u8>where
T: Clone,
Copies self into a new NonEmptyVec.
Unlike slice::to_vec, this returns a NonEmptyVec<T> instead of a
Vec<T>.
Examples
Basic usage:
use not_empty::{NonEmptySlice, NonEmptyVec};
let slice = &[1, 2, 3];
let nonempty: &NonEmptySlice<_> = NonEmptySlice::new(slice)?;
let nonempty_vec: NonEmptyVec<_> = nonempty.to_vec();
assert_eq!(nonempty_vec, not_empty::vec![1, 2, 3]);sourcepub fn to_ascii_uppercase(&self) -> NonEmptyVec<u8>ⓘNotable traits for NonEmptyVec<u8>impl Write for NonEmptyVec<u8>
pub fn to_ascii_uppercase(&self) -> NonEmptyVec<u8>ⓘNotable traits for NonEmptyVec<u8>impl Write for NonEmptyVec<u8>
Returns a non-empty vector containing a copy of this slice where each byte is mapped to its ASCII upper case equivalent.
ASCII letters ‘a’ to ‘z’ are mapped to ‘A’ to ‘Z’, but non-ASCII letters are unchanged.
To uppercase the value in-place, use make_ascii_uppercase.
sourcepub fn to_ascii_lowercase(&self) -> NonEmptyVec<u8>ⓘNotable traits for NonEmptyVec<u8>impl Write for NonEmptyVec<u8>
pub fn to_ascii_lowercase(&self) -> NonEmptyVec<u8>ⓘNotable traits for NonEmptyVec<u8>impl Write for NonEmptyVec<u8>
Returns a non-empty vector containing a copy of this slice where each byte is mapped to its ASCII lower case equivalent.
ASCII letters ‘A’ to ‘Z’ are mapped to ‘a’ to ‘z’, but non-ASCII letters are unchanged.
To uppercase the value in-place, use make_ascii_lowercase.
Methods from Deref<Target = [T]>
sourcepub fn sort_floats(&mut self)
🔬This is a nightly-only experimental API. (sort_floats)
pub fn sort_floats(&mut self)
sort_floats)Sorts the slice of floats.
This sort is in-place (i.e. does not allocate), O(n * log(n)) worst-case, and uses
the ordering defined by f32::total_cmp.
Current implementation
This uses the same sorting algorithm as sort_unstable_by.
Examples
#![feature(sort_floats)]
let mut v = [2.6, -5e-8, f32::NAN, 8.29, f32::INFINITY, -1.0, 0.0, -f32::INFINITY, -0.0];
v.sort_floats();
let sorted = [-f32::INFINITY, -1.0, -5e-8, -0.0, 0.0, 2.6, 8.29, f32::INFINITY, f32::NAN];
assert_eq!(&v[..8], &sorted[..8]);
assert!(v[8].is_nan());sourcepub fn flatten(&self) -> &[T]ⓘNotable traits for &[u8]impl Read for &[u8]impl Write for &mut [u8]
🔬This is a nightly-only experimental API. (slice_flatten)
pub fn flatten(&self) -> &[T]ⓘNotable traits for &[u8]impl Read for &[u8]impl Write for &mut [u8]
slice_flatten)Takes a &[[T; N]], and flattens it to a &[T].
Panics
This panics if the length of the resulting slice would overflow a usize.
This is only possible when flattening a slice of arrays of zero-sized
types, and thus tends to be irrelevant in practice. If
size_of::<T>() > 0, this will never panic.
Examples
#![feature(slice_flatten)]
assert_eq!([[1, 2, 3], [4, 5, 6]].flatten(), &[1, 2, 3, 4, 5, 6]);
assert_eq!(
[[1, 2, 3], [4, 5, 6]].flatten(),
[[1, 2], [3, 4], [5, 6]].flatten(),
);
let slice_of_empty_arrays: &[[i32; 0]] = &[[], [], [], [], []];
assert!(slice_of_empty_arrays.flatten().is_empty());
let empty_slice_of_arrays: &[[u32; 10]] = &[];
assert!(empty_slice_of_arrays.flatten().is_empty());sourcepub fn flatten_mut(&mut self) -> &mut [T]ⓘNotable traits for &[u8]impl Read for &[u8]impl Write for &mut [u8]
🔬This is a nightly-only experimental API. (slice_flatten)
pub fn flatten_mut(&mut self) -> &mut [T]ⓘNotable traits for &[u8]impl Read for &[u8]impl Write for &mut [u8]
slice_flatten)Takes a &mut [[T; N]], and flattens it to a &mut [T].
Panics
This panics if the length of the resulting slice would overflow a usize.
This is only possible when flattening a slice of arrays of zero-sized
types, and thus tends to be irrelevant in practice. If
size_of::<T>() > 0, this will never panic.
Examples
#![feature(slice_flatten)]
fn add_5_to_all(slice: &mut [i32]) {
for i in slice {
*i += 5;
}
}
let mut array = [[1, 2, 3], [4, 5, 6], [7, 8, 9]];
add_5_to_all(array.flatten_mut());
assert_eq!(array, [[6, 7, 8], [9, 10, 11], [12, 13, 14]]);sourcepub fn sort_floats(&mut self)
🔬This is a nightly-only experimental API. (sort_floats)
pub fn sort_floats(&mut self)
sort_floats)Sorts the slice of floats.
This sort is in-place (i.e. does not allocate), O(n * log(n)) worst-case, and uses
the ordering defined by f64::total_cmp.
Current implementation
This uses the same sorting algorithm as sort_unstable_by.
Examples
#![feature(sort_floats)]
let mut v = [2.6, -5e-8, f64::NAN, 8.29, f64::INFINITY, -1.0, 0.0, -f64::INFINITY, -0.0];
v.sort_floats();
let sorted = [-f64::INFINITY, -1.0, -5e-8, -0.0, 0.0, 2.6, 8.29, f64::INFINITY, f64::NAN];
assert_eq!(&v[..8], &sorted[..8]);
assert!(v[8].is_nan());1.23.0 · sourcepub fn is_ascii(&self) -> bool
pub fn is_ascii(&self) -> bool
Checks if all bytes in this slice are within the ASCII range.
1.23.0 · sourcepub fn eq_ignore_ascii_case(&self, other: &[u8]) -> bool
pub fn eq_ignore_ascii_case(&self, other: &[u8]) -> bool
Checks that two slices are an ASCII case-insensitive match.
Same as to_ascii_lowercase(a) == to_ascii_lowercase(b),
but without allocating and copying temporaries.
1.23.0 · sourcepub fn make_ascii_uppercase(&mut self)
pub fn make_ascii_uppercase(&mut self)
Converts this slice to its ASCII upper case equivalent in-place.
ASCII letters ‘a’ to ‘z’ are mapped to ‘A’ to ‘Z’, but non-ASCII letters are unchanged.
To return a new uppercased value without modifying the existing one, use
to_ascii_uppercase.
1.23.0 · sourcepub fn make_ascii_lowercase(&mut self)
pub fn make_ascii_lowercase(&mut self)
Converts this slice to its ASCII lower case equivalent in-place.
ASCII letters ‘A’ to ‘Z’ are mapped to ‘a’ to ‘z’, but non-ASCII letters are unchanged.
To return a new lowercased value without modifying the existing one, use
to_ascii_lowercase.
1.60.0 · sourcepub fn escape_ascii(&self) -> EscapeAscii<'_>
pub fn escape_ascii(&self) -> EscapeAscii<'_>
Returns an iterator that produces an escaped version of this slice, treating it as an ASCII string.
Examples
let s = b"0\t\r\n'\"\\\x9d";
let escaped = s.escape_ascii().to_string();
assert_eq!(escaped, "0\\t\\r\\n\\'\\\"\\\\\\x9d");sourcepub fn trim_ascii_start(&self) -> &[u8]ⓘNotable traits for &[u8]impl Read for &[u8]impl Write for &mut [u8]
🔬This is a nightly-only experimental API. (byte_slice_trim_ascii)
pub fn trim_ascii_start(&self) -> &[u8]ⓘNotable traits for &[u8]impl Read for &[u8]impl Write for &mut [u8]
byte_slice_trim_ascii)Returns a byte slice with leading ASCII whitespace bytes removed.
‘Whitespace’ refers to the definition used by
u8::is_ascii_whitespace.
Examples
#![feature(byte_slice_trim_ascii)]
assert_eq!(b" \t hello world\n".trim_ascii_start(), b"hello world\n");
assert_eq!(b" ".trim_ascii_start(), b"");
assert_eq!(b"".trim_ascii_start(), b"");sourcepub fn trim_ascii_end(&self) -> &[u8]ⓘNotable traits for &[u8]impl Read for &[u8]impl Write for &mut [u8]
🔬This is a nightly-only experimental API. (byte_slice_trim_ascii)
pub fn trim_ascii_end(&self) -> &[u8]ⓘNotable traits for &[u8]impl Read for &[u8]impl Write for &mut [u8]
byte_slice_trim_ascii)Returns a byte slice with trailing ASCII whitespace bytes removed.
‘Whitespace’ refers to the definition used by
u8::is_ascii_whitespace.
Examples
#![feature(byte_slice_trim_ascii)]
assert_eq!(b"\r hello world\n ".trim_ascii_end(), b"\r hello world");
assert_eq!(b" ".trim_ascii_end(), b"");
assert_eq!(b"".trim_ascii_end(), b"");sourcepub fn trim_ascii(&self) -> &[u8]ⓘNotable traits for &[u8]impl Read for &[u8]impl Write for &mut [u8]
🔬This is a nightly-only experimental API. (byte_slice_trim_ascii)
pub fn trim_ascii(&self) -> &[u8]ⓘNotable traits for &[u8]impl Read for &[u8]impl Write for &mut [u8]
byte_slice_trim_ascii)Returns a byte slice with leading and trailing ASCII whitespace bytes removed.
‘Whitespace’ refers to the definition used by
u8::is_ascii_whitespace.
Examples
#![feature(byte_slice_trim_ascii)]
assert_eq!(b"\r hello world\n ".trim_ascii(), b"hello world");
assert_eq!(b" ".trim_ascii(), b"");
assert_eq!(b"".trim_ascii(), b"");1.0.0 · sourcepub fn first(&self) -> Option<&T>
pub fn first(&self) -> Option<&T>
Returns the first element of the slice, or None if it is empty.
Examples
let v = [10, 40, 30];
assert_eq!(Some(&10), v.first());
let w: &[i32] = &[];
assert_eq!(None, w.first());1.0.0 · sourcepub fn first_mut(&mut self) -> Option<&mut T>
pub fn first_mut(&mut self) -> Option<&mut T>
Returns a mutable pointer to the first element of the slice, or None if it is empty.
Examples
let x = &mut [0, 1, 2];
if let Some(first) = x.first_mut() {
*first = 5;
}
assert_eq!(x, &[5, 1, 2]);1.5.0 · sourcepub fn split_first(&self) -> Option<(&T, &[T])>
pub fn split_first(&self) -> Option<(&T, &[T])>
Returns the first and all the rest of the elements of the slice, or None if it is empty.
Examples
let x = &[0, 1, 2];
if let Some((first, elements)) = x.split_first() {
assert_eq!(first, &0);
assert_eq!(elements, &[1, 2]);
}1.5.0 · sourcepub fn split_first_mut(&mut self) -> Option<(&mut T, &mut [T])>
pub fn split_first_mut(&mut self) -> Option<(&mut T, &mut [T])>
Returns the first and all the rest of the elements of the slice, or None if it is empty.
Examples
let x = &mut [0, 1, 2];
if let Some((first, elements)) = x.split_first_mut() {
*first = 3;
elements[0] = 4;
elements[1] = 5;
}
assert_eq!(x, &[3, 4, 5]);1.5.0 · sourcepub fn split_last(&self) -> Option<(&T, &[T])>
pub fn split_last(&self) -> Option<(&T, &[T])>
Returns the last and all the rest of the elements of the slice, or None if it is empty.
Examples
let x = &[0, 1, 2];
if let Some((last, elements)) = x.split_last() {
assert_eq!(last, &2);
assert_eq!(elements, &[0, 1]);
}1.5.0 · sourcepub fn split_last_mut(&mut self) -> Option<(&mut T, &mut [T])>
pub fn split_last_mut(&mut self) -> Option<(&mut T, &mut [T])>
Returns the last and all the rest of the elements of the slice, or None if it is empty.
Examples
let x = &mut [0, 1, 2];
if let Some((last, elements)) = x.split_last_mut() {
*last = 3;
elements[0] = 4;
elements[1] = 5;
}
assert_eq!(x, &[4, 5, 3]);1.0.0 · sourcepub fn last(&self) -> Option<&T>
pub fn last(&self) -> Option<&T>
Returns the last element of the slice, or None if it is empty.
Examples
let v = [10, 40, 30];
assert_eq!(Some(&30), v.last());
let w: &[i32] = &[];
assert_eq!(None, w.last());1.0.0 · sourcepub fn last_mut(&mut self) -> Option<&mut T>
pub fn last_mut(&mut self) -> Option<&mut T>
Returns a mutable pointer to the last item in the slice.
Examples
let x = &mut [0, 1, 2];
if let Some(last) = x.last_mut() {
*last = 10;
}
assert_eq!(x, &[0, 1, 10]);1.0.0 · sourcepub fn get<I>(&self, index: I) -> Option<&<I as SliceIndex<[T]>>::Output>where
I: SliceIndex<[T]>,
pub fn get<I>(&self, index: I) -> Option<&<I as SliceIndex<[T]>>::Output>where
I: SliceIndex<[T]>,
Returns a reference to an element or subslice depending on the type of index.
- If given a position, returns a reference to the element at that
position or
Noneif out of bounds. - If given a range, returns the subslice corresponding to that range,
or
Noneif out of bounds.
Examples
let v = [10, 40, 30];
assert_eq!(Some(&40), v.get(1));
assert_eq!(Some(&[10, 40][..]), v.get(0..2));
assert_eq!(None, v.get(3));
assert_eq!(None, v.get(0..4));1.0.0 · sourcepub fn get_mut<I>(
&mut self,
index: I
) -> Option<&mut <I as SliceIndex<[T]>>::Output>where
I: SliceIndex<[T]>,
pub fn get_mut<I>(
&mut self,
index: I
) -> Option<&mut <I as SliceIndex<[T]>>::Output>where
I: SliceIndex<[T]>,
1.0.0 · sourcepub unsafe fn get_unchecked<I>(
&self,
index: I
) -> &<I as SliceIndex<[T]>>::Outputwhere
I: SliceIndex<[T]>,
pub unsafe fn get_unchecked<I>(
&self,
index: I
) -> &<I as SliceIndex<[T]>>::Outputwhere
I: SliceIndex<[T]>,
Returns a reference to an element or subslice, without doing bounds checking.
For a safe alternative see get.
Safety
Calling this method with an out-of-bounds index is undefined behavior even if the resulting reference is not used.
Examples
let x = &[1, 2, 4];
unsafe {
assert_eq!(x.get_unchecked(1), &2);
}1.0.0 · sourcepub unsafe fn get_unchecked_mut<I>(
&mut self,
index: I
) -> &mut <I as SliceIndex<[T]>>::Outputwhere
I: SliceIndex<[T]>,
pub unsafe fn get_unchecked_mut<I>(
&mut self,
index: I
) -> &mut <I as SliceIndex<[T]>>::Outputwhere
I: SliceIndex<[T]>,
Returns a mutable reference to an element or subslice, without doing bounds checking.
For a safe alternative see get_mut.
Safety
Calling this method with an out-of-bounds index is undefined behavior even if the resulting reference is not used.
Examples
let x = &mut [1, 2, 4];
unsafe {
let elem = x.get_unchecked_mut(1);
*elem = 13;
}
assert_eq!(x, &[1, 13, 4]);1.0.0 · sourcepub fn as_ptr(&self) -> *const T
pub fn as_ptr(&self) -> *const T
Returns a raw pointer to the slice’s buffer.
The caller must ensure that the slice outlives the pointer this function returns, or else it will end up pointing to garbage.
The caller must also ensure that the memory the pointer (non-transitively) points to
is never written to (except inside an UnsafeCell) using this pointer or any pointer
derived from it. If you need to mutate the contents of the slice, use as_mut_ptr.
Modifying the container referenced by this slice may cause its buffer to be reallocated, which would also make any pointers to it invalid.
Examples
let x = &[1, 2, 4];
let x_ptr = x.as_ptr();
unsafe {
for i in 0..x.len() {
assert_eq!(x.get_unchecked(i), &*x_ptr.add(i));
}
}1.0.0 · sourcepub fn as_mut_ptr(&mut self) -> *mut T
pub fn as_mut_ptr(&mut self) -> *mut T
Returns an unsafe mutable pointer to the slice’s buffer.
The caller must ensure that the slice outlives the pointer this function returns, or else it will end up pointing to garbage.
Modifying the container referenced by this slice may cause its buffer to be reallocated, which would also make any pointers to it invalid.
Examples
let x = &mut [1, 2, 4];
let x_ptr = x.as_mut_ptr();
unsafe {
for i in 0..x.len() {
*x_ptr.add(i) += 2;
}
}
assert_eq!(x, &[3, 4, 6]);1.48.0 · sourcepub fn as_ptr_range(&self) -> Range<*const T>
pub fn as_ptr_range(&self) -> Range<*const T>
Returns the two raw pointers spanning the slice.
The returned range is half-open, which means that the end pointer points one past the last element of the slice. This way, an empty slice is represented by two equal pointers, and the difference between the two pointers represents the size of the slice.
See as_ptr for warnings on using these pointers. The end pointer
requires extra caution, as it does not point to a valid element in the
slice.
This function is useful for interacting with foreign interfaces which use two pointers to refer to a range of elements in memory, as is common in C++.
It can also be useful to check if a pointer to an element refers to an element of this slice:
let a = [1, 2, 3];
let x = &a[1] as *const _;
let y = &5 as *const _;
assert!(a.as_ptr_range().contains(&x));
assert!(!a.as_ptr_range().contains(&y));1.48.0 · sourcepub fn as_mut_ptr_range(&mut self) -> Range<*mut T>
pub fn as_mut_ptr_range(&mut self) -> Range<*mut T>
Returns the two unsafe mutable pointers spanning the slice.
The returned range is half-open, which means that the end pointer points one past the last element of the slice. This way, an empty slice is represented by two equal pointers, and the difference between the two pointers represents the size of the slice.
See as_mut_ptr for warnings on using these pointers. The end
pointer requires extra caution, as it does not point to a valid element
in the slice.
This function is useful for interacting with foreign interfaces which use two pointers to refer to a range of elements in memory, as is common in C++.
sourcepub unsafe fn swap_unchecked(&mut self, a: usize, b: usize)
🔬This is a nightly-only experimental API. (slice_swap_unchecked)
pub unsafe fn swap_unchecked(&mut self, a: usize, b: usize)
slice_swap_unchecked)Swaps two elements in the slice, without doing bounds checking.
For a safe alternative see swap.
Arguments
- a - The index of the first element
- b - The index of the second element
Safety
Calling this method with an out-of-bounds index is undefined behavior.
The caller has to ensure that a < self.len() and b < self.len().
Examples
#![feature(slice_swap_unchecked)]
let mut v = ["a", "b", "c", "d"];
// SAFETY: we know that 1 and 3 are both indices of the slice
unsafe { v.swap_unchecked(1, 3) };
assert!(v == ["a", "d", "c", "b"]);1.0.0 · sourcepub fn reverse(&mut self)
pub fn reverse(&mut self)
Reverses the order of elements in the slice, in place.
Examples
let mut v = [1, 2, 3];
v.reverse();
assert!(v == [3, 2, 1]);1.0.0 · sourcepub fn iter(&self) -> Iter<'_, T>
pub fn iter(&self) -> Iter<'_, T>
Returns an iterator over the slice.
The iterator yields all items from start to end.
Examples
let x = &[1, 2, 4];
let mut iterator = x.iter();
assert_eq!(iterator.next(), Some(&1));
assert_eq!(iterator.next(), Some(&2));
assert_eq!(iterator.next(), Some(&4));
assert_eq!(iterator.next(), None);1.0.0 · sourcepub fn iter_mut(&mut self) -> IterMut<'_, T>
pub fn iter_mut(&mut self) -> IterMut<'_, T>
Returns an iterator that allows modifying each value.
The iterator yields all items from start to end.
Examples
let x = &mut [1, 2, 4];
for elem in x.iter_mut() {
*elem += 2;
}
assert_eq!(x, &[3, 4, 6]);1.0.0 · sourcepub fn windows(&self, size: usize) -> Windows<'_, T>
pub fn windows(&self, size: usize) -> Windows<'_, T>
Returns an iterator over all contiguous windows of length
size. The windows overlap. If the slice is shorter than
size, the iterator returns no values.
Panics
Panics if size is 0.
Examples
let slice = ['r', 'u', 's', 't'];
let mut iter = slice.windows(2);
assert_eq!(iter.next().unwrap(), &['r', 'u']);
assert_eq!(iter.next().unwrap(), &['u', 's']);
assert_eq!(iter.next().unwrap(), &['s', 't']);
assert!(iter.next().is_none());If the slice is shorter than size:
let slice = ['f', 'o', 'o'];
let mut iter = slice.windows(4);
assert!(iter.next().is_none());1.0.0 · sourcepub fn chunks(&self, chunk_size: usize) -> Chunks<'_, T>
pub fn chunks(&self, chunk_size: usize) -> Chunks<'_, T>
Returns an iterator over chunk_size elements of the slice at a time, starting at the
beginning of the slice.
The chunks are slices and do not overlap. If chunk_size does not divide the length of the
slice, then the last chunk will not have length chunk_size.
See chunks_exact for a variant of this iterator that returns chunks of always exactly
chunk_size elements, and rchunks for the same iterator but starting at the end of the
slice.
Panics
Panics if chunk_size is 0.
Examples
let slice = ['l', 'o', 'r', 'e', 'm'];
let mut iter = slice.chunks(2);
assert_eq!(iter.next().unwrap(), &['l', 'o']);
assert_eq!(iter.next().unwrap(), &['r', 'e']);
assert_eq!(iter.next().unwrap(), &['m']);
assert!(iter.next().is_none());1.0.0 · sourcepub fn chunks_mut(&mut self, chunk_size: usize) -> ChunksMut<'_, T>
pub fn chunks_mut(&mut self, chunk_size: usize) -> ChunksMut<'_, T>
Returns an iterator over chunk_size elements of the slice at a time, starting at the
beginning of the slice.
The chunks are mutable slices, and do not overlap. If chunk_size does not divide the
length of the slice, then the last chunk will not have length chunk_size.
See chunks_exact_mut for a variant of this iterator that returns chunks of always
exactly chunk_size elements, and rchunks_mut for the same iterator but starting at
the end of the slice.
Panics
Panics if chunk_size is 0.
Examples
let v = &mut [0, 0, 0, 0, 0];
let mut count = 1;
for chunk in v.chunks_mut(2) {
for elem in chunk.iter_mut() {
*elem += count;
}
count += 1;
}
assert_eq!(v, &[1, 1, 2, 2, 3]);1.31.0 · sourcepub fn chunks_exact(&self, chunk_size: usize) -> ChunksExact<'_, T>
pub fn chunks_exact(&self, chunk_size: usize) -> ChunksExact<'_, T>
Returns an iterator over chunk_size elements of the slice at a time, starting at the
beginning of the slice.
The chunks are slices and do not overlap. If chunk_size does not divide the length of the
slice, then the last up to chunk_size-1 elements will be omitted and can be retrieved
from the remainder function of the iterator.
Due to each chunk having exactly chunk_size elements, the compiler can often optimize the
resulting code better than in the case of chunks.
See chunks for a variant of this iterator that also returns the remainder as a smaller
chunk, and rchunks_exact for the same iterator but starting at the end of the slice.
Panics
Panics if chunk_size is 0.
Examples
let slice = ['l', 'o', 'r', 'e', 'm'];
let mut iter = slice.chunks_exact(2);
assert_eq!(iter.next().unwrap(), &['l', 'o']);
assert_eq!(iter.next().unwrap(), &['r', 'e']);
assert!(iter.next().is_none());
assert_eq!(iter.remainder(), &['m']);1.31.0 · sourcepub fn chunks_exact_mut(&mut self, chunk_size: usize) -> ChunksExactMut<'_, T>
pub fn chunks_exact_mut(&mut self, chunk_size: usize) -> ChunksExactMut<'_, T>
Returns an iterator over chunk_size elements of the slice at a time, starting at the
beginning of the slice.
The chunks are mutable slices, and do not overlap. If chunk_size does not divide the
length of the slice, then the last up to chunk_size-1 elements will be omitted and can be
retrieved from the into_remainder function of the iterator.
Due to each chunk having exactly chunk_size elements, the compiler can often optimize the
resulting code better than in the case of chunks_mut.
See chunks_mut for a variant of this iterator that also returns the remainder as a
smaller chunk, and rchunks_exact_mut for the same iterator but starting at the end of
the slice.
Panics
Panics if chunk_size is 0.
Examples
let v = &mut [0, 0, 0, 0, 0];
let mut count = 1;
for chunk in v.chunks_exact_mut(2) {
for elem in chunk.iter_mut() {
*elem += count;
}
count += 1;
}
assert_eq!(v, &[1, 1, 2, 2, 0]);sourcepub unsafe fn as_chunks_unchecked<const N: usize>(&self) -> &[[T; N]]
🔬This is a nightly-only experimental API. (slice_as_chunks)
pub unsafe fn as_chunks_unchecked<const N: usize>(&self) -> &[[T; N]]
slice_as_chunks)Splits the slice into a slice of N-element arrays,
assuming that there’s no remainder.
Safety
This may only be called when
- The slice splits exactly into
N-element chunks (akaself.len() % N == 0). N != 0.
Examples
#![feature(slice_as_chunks)]
let slice: &[char] = &['l', 'o', 'r', 'e', 'm', '!'];
let chunks: &[[char; 1]] =
// SAFETY: 1-element chunks never have remainder
unsafe { slice.as_chunks_unchecked() };
assert_eq!(chunks, &[['l'], ['o'], ['r'], ['e'], ['m'], ['!']]);
let chunks: &[[char; 3]] =
// SAFETY: The slice length (6) is a multiple of 3
unsafe { slice.as_chunks_unchecked() };
assert_eq!(chunks, &[['l', 'o', 'r'], ['e', 'm', '!']]);
// These would be unsound:
// let chunks: &[[_; 5]] = slice.as_chunks_unchecked() // The slice length is not a multiple of 5
// let chunks: &[[_; 0]] = slice.as_chunks_unchecked() // Zero-length chunks are never allowedsourcepub fn as_chunks<const N: usize>(&self) -> (&[[T; N]], &[T])
🔬This is a nightly-only experimental API. (slice_as_chunks)
pub fn as_chunks<const N: usize>(&self) -> (&[[T; N]], &[T])
slice_as_chunks)Splits the slice into a slice of N-element arrays,
starting at the beginning of the slice,
and a remainder slice with length strictly less than N.
Panics
Panics if N is 0. This check will most probably get changed to a compile time
error before this method gets stabilized.
Examples
#![feature(slice_as_chunks)]
let slice = ['l', 'o', 'r', 'e', 'm'];
let (chunks, remainder) = slice.as_chunks();
assert_eq!(chunks, &[['l', 'o'], ['r', 'e']]);
assert_eq!(remainder, &['m']);sourcepub fn as_rchunks<const N: usize>(&self) -> (&[T], &[[T; N]])
🔬This is a nightly-only experimental API. (slice_as_chunks)
pub fn as_rchunks<const N: usize>(&self) -> (&[T], &[[T; N]])
slice_as_chunks)Splits the slice into a slice of N-element arrays,
starting at the end of the slice,
and a remainder slice with length strictly less than N.
Panics
Panics if N is 0. This check will most probably get changed to a compile time
error before this method gets stabilized.
Examples
#![feature(slice_as_chunks)]
let slice = ['l', 'o', 'r', 'e', 'm'];
let (remainder, chunks) = slice.as_rchunks();
assert_eq!(remainder, &['l']);
assert_eq!(chunks, &[['o', 'r'], ['e', 'm']]);sourcepub fn array_chunks<const N: usize>(&self) -> ArrayChunks<'_, T, N>
🔬This is a nightly-only experimental API. (array_chunks)
pub fn array_chunks<const N: usize>(&self) -> ArrayChunks<'_, T, N>
array_chunks)Returns an iterator over N elements of the slice at a time, starting at the
beginning of the slice.
The chunks are array references and do not overlap. If N does not divide the
length of the slice, then the last up to N-1 elements will be omitted and can be
retrieved from the remainder function of the iterator.
This method is the const generic equivalent of chunks_exact.
Panics
Panics if N is 0. This check will most probably get changed to a compile time
error before this method gets stabilized.
Examples
#![feature(array_chunks)]
let slice = ['l', 'o', 'r', 'e', 'm'];
let mut iter = slice.array_chunks();
assert_eq!(iter.next().unwrap(), &['l', 'o']);
assert_eq!(iter.next().unwrap(), &['r', 'e']);
assert!(iter.next().is_none());
assert_eq!(iter.remainder(), &['m']);sourcepub unsafe fn as_chunks_unchecked_mut<const N: usize>(
&mut self
) -> &mut [[T; N]]
🔬This is a nightly-only experimental API. (slice_as_chunks)
pub unsafe fn as_chunks_unchecked_mut<const N: usize>(
&mut self
) -> &mut [[T; N]]
slice_as_chunks)Splits the slice into a slice of N-element arrays,
assuming that there’s no remainder.
Safety
This may only be called when
- The slice splits exactly into
N-element chunks (akaself.len() % N == 0). N != 0.
Examples
#![feature(slice_as_chunks)]
let slice: &mut [char] = &mut ['l', 'o', 'r', 'e', 'm', '!'];
let chunks: &mut [[char; 1]] =
// SAFETY: 1-element chunks never have remainder
unsafe { slice.as_chunks_unchecked_mut() };
chunks[0] = ['L'];
assert_eq!(chunks, &[['L'], ['o'], ['r'], ['e'], ['m'], ['!']]);
let chunks: &mut [[char; 3]] =
// SAFETY: The slice length (6) is a multiple of 3
unsafe { slice.as_chunks_unchecked_mut() };
chunks[1] = ['a', 'x', '?'];
assert_eq!(slice, &['L', 'o', 'r', 'a', 'x', '?']);
// These would be unsound:
// let chunks: &[[_; 5]] = slice.as_chunks_unchecked_mut() // The slice length is not a multiple of 5
// let chunks: &[[_; 0]] = slice.as_chunks_unchecked_mut() // Zero-length chunks are never allowedsourcepub fn as_chunks_mut<const N: usize>(&mut self) -> (&mut [[T; N]], &mut [T])
🔬This is a nightly-only experimental API. (slice_as_chunks)
pub fn as_chunks_mut<const N: usize>(&mut self) -> (&mut [[T; N]], &mut [T])
slice_as_chunks)Splits the slice into a slice of N-element arrays,
starting at the beginning of the slice,
and a remainder slice with length strictly less than N.
Panics
Panics if N is 0. This check will most probably get changed to a compile time
error before this method gets stabilized.
Examples
#![feature(slice_as_chunks)]
let v = &mut [0, 0, 0, 0, 0];
let mut count = 1;
let (chunks, remainder) = v.as_chunks_mut();
remainder[0] = 9;
for chunk in chunks {
*chunk = [count; 2];
count += 1;
}
assert_eq!(v, &[1, 1, 2, 2, 9]);sourcepub fn as_rchunks_mut<const N: usize>(&mut self) -> (&mut [T], &mut [[T; N]])
🔬This is a nightly-only experimental API. (slice_as_chunks)
pub fn as_rchunks_mut<const N: usize>(&mut self) -> (&mut [T], &mut [[T; N]])
slice_as_chunks)Splits the slice into a slice of N-element arrays,
starting at the end of the slice,
and a remainder slice with length strictly less than N.
Panics
Panics if N is 0. This check will most probably get changed to a compile time
error before this method gets stabilized.
Examples
#![feature(slice_as_chunks)]
let v = &mut [0, 0, 0, 0, 0];
let mut count = 1;
let (remainder, chunks) = v.as_rchunks_mut();
remainder[0] = 9;
for chunk in chunks {
*chunk = [count; 2];
count += 1;
}
assert_eq!(v, &[9, 1, 1, 2, 2]);sourcepub fn array_chunks_mut<const N: usize>(&mut self) -> ArrayChunksMut<'_, T, N>
🔬This is a nightly-only experimental API. (array_chunks)
pub fn array_chunks_mut<const N: usize>(&mut self) -> ArrayChunksMut<'_, T, N>
array_chunks)Returns an iterator over N elements of the slice at a time, starting at the
beginning of the slice.
The chunks are mutable array references and do not overlap. If N does not divide
the length of the slice, then the last up to N-1 elements will be omitted and
can be retrieved from the into_remainder function of the iterator.
This method is the const generic equivalent of chunks_exact_mut.
Panics
Panics if N is 0. This check will most probably get changed to a compile time
error before this method gets stabilized.
Examples
#![feature(array_chunks)]
let v = &mut [0, 0, 0, 0, 0];
let mut count = 1;
for chunk in v.array_chunks_mut() {
*chunk = [count; 2];
count += 1;
}
assert_eq!(v, &[1, 1, 2, 2, 0]);sourcepub fn array_windows<const N: usize>(&self) -> ArrayWindows<'_, T, N>
🔬This is a nightly-only experimental API. (array_windows)
pub fn array_windows<const N: usize>(&self) -> ArrayWindows<'_, T, N>
array_windows)Returns an iterator over overlapping windows of N elements of a slice,
starting at the beginning of the slice.
This is the const generic equivalent of windows.
If N is greater than the size of the slice, it will return no windows.
Panics
Panics if N is 0. This check will most probably get changed to a compile time
error before this method gets stabilized.
Examples
#![feature(array_windows)]
let slice = [0, 1, 2, 3];
let mut iter = slice.array_windows();
assert_eq!(iter.next().unwrap(), &[0, 1]);
assert_eq!(iter.next().unwrap(), &[1, 2]);
assert_eq!(iter.next().unwrap(), &[2, 3]);
assert!(iter.next().is_none());1.31.0 · sourcepub fn rchunks(&self, chunk_size: usize) -> RChunks<'_, T>
pub fn rchunks(&self, chunk_size: usize) -> RChunks<'_, T>
Returns an iterator over chunk_size elements of the slice at a time, starting at the end
of the slice.
The chunks are slices and do not overlap. If chunk_size does not divide the length of the
slice, then the last chunk will not have length chunk_size.
See rchunks_exact for a variant of this iterator that returns chunks of always exactly
chunk_size elements, and chunks for the same iterator but starting at the beginning
of the slice.
Panics
Panics if chunk_size is 0.
Examples
let slice = ['l', 'o', 'r', 'e', 'm'];
let mut iter = slice.rchunks(2);
assert_eq!(iter.next().unwrap(), &['e', 'm']);
assert_eq!(iter.next().unwrap(), &['o', 'r']);
assert_eq!(iter.next().unwrap(), &['l']);
assert!(iter.next().is_none());1.31.0 · sourcepub fn rchunks_mut(&mut self, chunk_size: usize) -> RChunksMut<'_, T>
pub fn rchunks_mut(&mut self, chunk_size: usize) -> RChunksMut<'_, T>
Returns an iterator over chunk_size elements of the slice at a time, starting at the end
of the slice.
The chunks are mutable slices, and do not overlap. If chunk_size does not divide the
length of the slice, then the last chunk will not have length chunk_size.
See rchunks_exact_mut for a variant of this iterator that returns chunks of always
exactly chunk_size elements, and chunks_mut for the same iterator but starting at the
beginning of the slice.
Panics
Panics if chunk_size is 0.
Examples
let v = &mut [0, 0, 0, 0, 0];
let mut count = 1;
for chunk in v.rchunks_mut(2) {
for elem in chunk.iter_mut() {
*elem += count;
}
count += 1;
}
assert_eq!(v, &[3, 2, 2, 1, 1]);1.31.0 · sourcepub fn rchunks_exact(&self, chunk_size: usize) -> RChunksExact<'_, T>
pub fn rchunks_exact(&self, chunk_size: usize) -> RChunksExact<'_, T>
Returns an iterator over chunk_size elements of the slice at a time, starting at the
end of the slice.
The chunks are slices and do not overlap. If chunk_size does not divide the length of the
slice, then the last up to chunk_size-1 elements will be omitted and can be retrieved
from the remainder function of the iterator.
Due to each chunk having exactly chunk_size elements, the compiler can often optimize the
resulting code better than in the case of rchunks.
See rchunks for a variant of this iterator that also returns the remainder as a smaller
chunk, and chunks_exact for the same iterator but starting at the beginning of the
slice.
Panics
Panics if chunk_size is 0.
Examples
let slice = ['l', 'o', 'r', 'e', 'm'];
let mut iter = slice.rchunks_exact(2);
assert_eq!(iter.next().unwrap(), &['e', 'm']);
assert_eq!(iter.next().unwrap(), &['o', 'r']);
assert!(iter.next().is_none());
assert_eq!(iter.remainder(), &['l']);1.31.0 · sourcepub fn rchunks_exact_mut(&mut self, chunk_size: usize) -> RChunksExactMut<'_, T>
pub fn rchunks_exact_mut(&mut self, chunk_size: usize) -> RChunksExactMut<'_, T>
Returns an iterator over chunk_size elements of the slice at a time, starting at the end
of the slice.
The chunks are mutable slices, and do not overlap. If chunk_size does not divide the
length of the slice, then the last up to chunk_size-1 elements will be omitted and can be
retrieved from the into_remainder function of the iterator.
Due to each chunk having exactly chunk_size elements, the compiler can often optimize the
resulting code better than in the case of chunks_mut.
See rchunks_mut for a variant of this iterator that also returns the remainder as a
smaller chunk, and chunks_exact_mut for the same iterator but starting at the beginning
of the slice.
Panics
Panics if chunk_size is 0.
Examples
let v = &mut [0, 0, 0, 0, 0];
let mut count = 1;
for chunk in v.rchunks_exact_mut(2) {
for elem in chunk.iter_mut() {
*elem += count;
}
count += 1;
}
assert_eq!(v, &[0, 2, 2, 1, 1]);sourcepub fn group_by<F>(&self, pred: F) -> GroupBy<'_, T, F>where
F: FnMut(&T, &T) -> bool,
🔬This is a nightly-only experimental API. (slice_group_by)
pub fn group_by<F>(&self, pred: F) -> GroupBy<'_, T, F>where
F: FnMut(&T, &T) -> bool,
slice_group_by)Returns an iterator over the slice producing non-overlapping runs of elements using the predicate to separate them.
The predicate is called on two elements following themselves,
it means the predicate is called on slice[0] and slice[1]
then on slice[1] and slice[2] and so on.
Examples
#![feature(slice_group_by)]
let slice = &[1, 1, 1, 3, 3, 2, 2, 2];
let mut iter = slice.group_by(|a, b| a == b);
assert_eq!(iter.next(), Some(&[1, 1, 1][..]));
assert_eq!(iter.next(), Some(&[3, 3][..]));
assert_eq!(iter.next(), Some(&[2, 2, 2][..]));
assert_eq!(iter.next(), None);This method can be used to extract the sorted subslices:
#![feature(slice_group_by)]
let slice = &[1, 1, 2, 3, 2, 3, 2, 3, 4];
let mut iter = slice.group_by(|a, b| a <= b);
assert_eq!(iter.next(), Some(&[1, 1, 2, 3][..]));
assert_eq!(iter.next(), Some(&[2, 3][..]));
assert_eq!(iter.next(), Some(&[2, 3, 4][..]));
assert_eq!(iter.next(), None);sourcepub fn group_by_mut<F>(&mut self, pred: F) -> GroupByMut<'_, T, F>where
F: FnMut(&T, &T) -> bool,
🔬This is a nightly-only experimental API. (slice_group_by)
pub fn group_by_mut<F>(&mut self, pred: F) -> GroupByMut<'_, T, F>where
F: FnMut(&T, &T) -> bool,
slice_group_by)Returns an iterator over the slice producing non-overlapping mutable runs of elements using the predicate to separate them.
The predicate is called on two elements following themselves,
it means the predicate is called on slice[0] and slice[1]
then on slice[1] and slice[2] and so on.
Examples
#![feature(slice_group_by)]
let slice = &mut [1, 1, 1, 3, 3, 2, 2, 2];
let mut iter = slice.group_by_mut(|a, b| a == b);
assert_eq!(iter.next(), Some(&mut [1, 1, 1][..]));
assert_eq!(iter.next(), Some(&mut [3, 3][..]));
assert_eq!(iter.next(), Some(&mut [2, 2, 2][..]));
assert_eq!(iter.next(), None);This method can be used to extract the sorted subslices:
#![feature(slice_group_by)]
let slice = &mut [1, 1, 2, 3, 2, 3, 2, 3, 4];
let mut iter = slice.group_by_mut(|a, b| a <= b);
assert_eq!(iter.next(), Some(&mut [1, 1, 2, 3][..]));
assert_eq!(iter.next(), Some(&mut [2, 3][..]));
assert_eq!(iter.next(), Some(&mut [2, 3, 4][..]));
assert_eq!(iter.next(), None);1.0.0 · sourcepub fn split_at(&self, mid: usize) -> (&[T], &[T])
pub fn split_at(&self, mid: usize) -> (&[T], &[T])
Divides one slice into two at an index.
The first will contain all indices from [0, mid) (excluding
the index mid itself) and the second will contain all
indices from [mid, len) (excluding the index len itself).
Panics
Panics if mid > len.
Examples
let v = [1, 2, 3, 4, 5, 6];
{
let (left, right) = v.split_at(0);
assert_eq!(left, []);
assert_eq!(right, [1, 2, 3, 4, 5, 6]);
}
{
let (left, right) = v.split_at(2);
assert_eq!(left, [1, 2]);
assert_eq!(right, [3, 4, 5, 6]);
}
{
let (left, right) = v.split_at(6);
assert_eq!(left, [1, 2, 3, 4, 5, 6]);
assert_eq!(right, []);
}1.0.0 · sourcepub fn split_at_mut(&mut self, mid: usize) -> (&mut [T], &mut [T])
pub fn split_at_mut(&mut self, mid: usize) -> (&mut [T], &mut [T])
Divides one mutable slice into two at an index.
The first will contain all indices from [0, mid) (excluding
the index mid itself) and the second will contain all
indices from [mid, len) (excluding the index len itself).
Panics
Panics if mid > len.
Examples
let mut v = [1, 0, 3, 0, 5, 6];
let (left, right) = v.split_at_mut(2);
assert_eq!(left, [1, 0]);
assert_eq!(right, [3, 0, 5, 6]);
left[1] = 2;
right[1] = 4;
assert_eq!(v, [1, 2, 3, 4, 5, 6]);sourcepub unsafe fn split_at_unchecked(&self, mid: usize) -> (&[T], &[T])
🔬This is a nightly-only experimental API. (slice_split_at_unchecked)
pub unsafe fn split_at_unchecked(&self, mid: usize) -> (&[T], &[T])
slice_split_at_unchecked)Divides one slice into two at an index, without doing bounds checking.
The first will contain all indices from [0, mid) (excluding
the index mid itself) and the second will contain all
indices from [mid, len) (excluding the index len itself).
For a safe alternative see split_at.
Safety
Calling this method with an out-of-bounds index is undefined behavior
even if the resulting reference is not used. The caller has to ensure that
0 <= mid <= self.len().
Examples
#![feature(slice_split_at_unchecked)]
let v = [1, 2, 3, 4, 5, 6];
unsafe {
let (left, right) = v.split_at_unchecked(0);
assert_eq!(left, []);
assert_eq!(right, [1, 2, 3, 4, 5, 6]);
}
unsafe {
let (left, right) = v.split_at_unchecked(2);
assert_eq!(left, [1, 2]);
assert_eq!(right, [3, 4, 5, 6]);
}
unsafe {
let (left, right) = v.split_at_unchecked(6);
assert_eq!(left, [1, 2, 3, 4, 5, 6]);
assert_eq!(right, []);
}sourcepub unsafe fn split_at_mut_unchecked(
&mut self,
mid: usize
) -> (&mut [T], &mut [T])
🔬This is a nightly-only experimental API. (slice_split_at_unchecked)
pub unsafe fn split_at_mut_unchecked(
&mut self,
mid: usize
) -> (&mut [T], &mut [T])
slice_split_at_unchecked)Divides one mutable slice into two at an index, without doing bounds checking.
The first will contain all indices from [0, mid) (excluding
the index mid itself) and the second will contain all
indices from [mid, len) (excluding the index len itself).
For a safe alternative see split_at_mut.
Safety
Calling this method with an out-of-bounds index is undefined behavior
even if the resulting reference is not used. The caller has to ensure that
0 <= mid <= self.len().
Examples
#![feature(slice_split_at_unchecked)]
let mut v = [1, 0, 3, 0, 5, 6];
// scoped to restrict the lifetime of the borrows
unsafe {
let (left, right) = v.split_at_mut_unchecked(2);
assert_eq!(left, [1, 0]);
assert_eq!(right, [3, 0, 5, 6]);
left[1] = 2;
right[1] = 4;
}
assert_eq!(v, [1, 2, 3, 4, 5, 6]);sourcepub fn split_array_ref<const N: usize>(&self) -> (&[T; N], &[T])
🔬This is a nightly-only experimental API. (split_array)
pub fn split_array_ref<const N: usize>(&self) -> (&[T; N], &[T])
split_array)Divides one slice into an array and a remainder slice at an index.
The array will contain all indices from [0, N) (excluding
the index N itself) and the slice will contain all
indices from [N, len) (excluding the index len itself).
Panics
Panics if N > len.
Examples
#![feature(split_array)]
let v = &[1, 2, 3, 4, 5, 6][..];
{
let (left, right) = v.split_array_ref::<0>();
assert_eq!(left, &[]);
assert_eq!(right, [1, 2, 3, 4, 5, 6]);
}
{
let (left, right) = v.split_array_ref::<2>();
assert_eq!(left, &[1, 2]);
assert_eq!(right, [3, 4, 5, 6]);
}
{
let (left, right) = v.split_array_ref::<6>();
assert_eq!(left, &[1, 2, 3, 4, 5, 6]);
assert_eq!(right, []);
}sourcepub fn split_array_mut<const N: usize>(&mut self) -> (&mut [T; N], &mut [T])
🔬This is a nightly-only experimental API. (split_array)
pub fn split_array_mut<const N: usize>(&mut self) -> (&mut [T; N], &mut [T])
split_array)Divides one mutable slice into an array and a remainder slice at an index.
The array will contain all indices from [0, N) (excluding
the index N itself) and the slice will contain all
indices from [N, len) (excluding the index len itself).
Panics
Panics if N > len.
Examples
#![feature(split_array)]
let mut v = &mut [1, 0, 3, 0, 5, 6][..];
let (left, right) = v.split_array_mut::<2>();
assert_eq!(left, &mut [1, 0]);
assert_eq!(right, [3, 0, 5, 6]);
left[1] = 2;
right[1] = 4;
assert_eq!(v, [1, 2, 3, 4, 5, 6]);sourcepub fn rsplit_array_ref<const N: usize>(&self) -> (&[T], &[T; N])
🔬This is a nightly-only experimental API. (split_array)
pub fn rsplit_array_ref<const N: usize>(&self) -> (&[T], &[T; N])
split_array)Divides one slice into an array and a remainder slice at an index from the end.
The slice will contain all indices from [0, len - N) (excluding
the index len - N itself) and the array will contain all
indices from [len - N, len) (excluding the index len itself).
Panics
Panics if N > len.
Examples
#![feature(split_array)]
let v = &[1, 2, 3, 4, 5, 6][..];
{
let (left, right) = v.rsplit_array_ref::<0>();
assert_eq!(left, [1, 2, 3, 4, 5, 6]);
assert_eq!(right, &[]);
}
{
let (left, right) = v.rsplit_array_ref::<2>();
assert_eq!(left, [1, 2, 3, 4]);
assert_eq!(right, &[5, 6]);
}
{
let (left, right) = v.rsplit_array_ref::<6>();
assert_eq!(left, []);
assert_eq!(right, &[1, 2, 3, 4, 5, 6]);
}sourcepub fn rsplit_array_mut<const N: usize>(&mut self) -> (&mut [T], &mut [T; N])
🔬This is a nightly-only experimental API. (split_array)
pub fn rsplit_array_mut<const N: usize>(&mut self) -> (&mut [T], &mut [T; N])
split_array)Divides one mutable slice into an array and a remainder slice at an index from the end.
The slice will contain all indices from [0, len - N) (excluding
the index N itself) and the array will contain all
indices from [len - N, len) (excluding the index len itself).
Panics
Panics if N > len.
Examples
#![feature(split_array)]
let mut v = &mut [1, 0, 3, 0, 5, 6][..];
let (left, right) = v.rsplit_array_mut::<4>();
assert_eq!(left, [1, 0]);
assert_eq!(right, &mut [3, 0, 5, 6]);
left[1] = 2;
right[1] = 4;
assert_eq!(v, [1, 2, 3, 4, 5, 6]);1.0.0 · sourcepub fn split<F>(&self, pred: F) -> Split<'_, T, F>where
F: FnMut(&T) -> bool,
pub fn split<F>(&self, pred: F) -> Split<'_, T, F>where
F: FnMut(&T) -> bool,
Returns an iterator over subslices separated by elements that match
pred. The matched element is not contained in the subslices.
Examples
let slice = [10, 40, 33, 20];
let mut iter = slice.split(|num| num % 3 == 0);
assert_eq!(iter.next().unwrap(), &[10, 40]);
assert_eq!(iter.next().unwrap(), &[20]);
assert!(iter.next().is_none());If the first element is matched, an empty slice will be the first item returned by the iterator. Similarly, if the last element in the slice is matched, an empty slice will be the last item returned by the iterator:
let slice = [10, 40, 33];
let mut iter = slice.split(|num| num % 3 == 0);
assert_eq!(iter.next().unwrap(), &[10, 40]);
assert_eq!(iter.next().unwrap(), &[]);
assert!(iter.next().is_none());If two matched elements are directly adjacent, an empty slice will be present between them:
let slice = [10, 6, 33, 20];
let mut iter = slice.split(|num| num % 3 == 0);
assert_eq!(iter.next().unwrap(), &[10]);
assert_eq!(iter.next().unwrap(), &[]);
assert_eq!(iter.next().unwrap(), &[20]);
assert!(iter.next().is_none());1.0.0 · sourcepub fn split_mut<F>(&mut self, pred: F) -> SplitMut<'_, T, F>where
F: FnMut(&T) -> bool,
pub fn split_mut<F>(&mut self, pred: F) -> SplitMut<'_, T, F>where
F: FnMut(&T) -> bool,
Returns an iterator over mutable subslices separated by elements that
match pred. The matched element is not contained in the subslices.
Examples
let mut v = [10, 40, 30, 20, 60, 50];
for group in v.split_mut(|num| *num % 3 == 0) {
group[0] = 1;
}
assert_eq!(v, [1, 40, 30, 1, 60, 1]);1.51.0 · sourcepub fn split_inclusive<F>(&self, pred: F) -> SplitInclusive<'_, T, F>where
F: FnMut(&T) -> bool,
pub fn split_inclusive<F>(&self, pred: F) -> SplitInclusive<'_, T, F>where
F: FnMut(&T) -> bool,
Returns an iterator over subslices separated by elements that match
pred. The matched element is contained in the end of the previous
subslice as a terminator.
Examples
let slice = [10, 40, 33, 20];
let mut iter = slice.split_inclusive(|num| num % 3 == 0);
assert_eq!(iter.next().unwrap(), &[10, 40, 33]);
assert_eq!(iter.next().unwrap(), &[20]);
assert!(iter.next().is_none());If the last element of the slice is matched, that element will be considered the terminator of the preceding slice. That slice will be the last item returned by the iterator.
let slice = [3, 10, 40, 33];
let mut iter = slice.split_inclusive(|num| num % 3 == 0);
assert_eq!(iter.next().unwrap(), &[3]);
assert_eq!(iter.next().unwrap(), &[10, 40, 33]);
assert!(iter.next().is_none());1.51.0 · sourcepub fn split_inclusive_mut<F>(&mut self, pred: F) -> SplitInclusiveMut<'_, T, F>where
F: FnMut(&T) -> bool,
pub fn split_inclusive_mut<F>(&mut self, pred: F) -> SplitInclusiveMut<'_, T, F>where
F: FnMut(&T) -> bool,
Returns an iterator over mutable subslices separated by elements that
match pred. The matched element is contained in the previous
subslice as a terminator.
Examples
let mut v = [10, 40, 30, 20, 60, 50];
for group in v.split_inclusive_mut(|num| *num % 3 == 0) {
let terminator_idx = group.len()-1;
group[terminator_idx] = 1;
}
assert_eq!(v, [10, 40, 1, 20, 1, 1]);1.27.0 · sourcepub fn rsplit<F>(&self, pred: F) -> RSplit<'_, T, F>where
F: FnMut(&T) -> bool,
pub fn rsplit<F>(&self, pred: F) -> RSplit<'_, T, F>where
F: FnMut(&T) -> bool,
Returns an iterator over subslices separated by elements that match
pred, starting at the end of the slice and working backwards.
The matched element is not contained in the subslices.
Examples
let slice = [11, 22, 33, 0, 44, 55];
let mut iter = slice.rsplit(|num| *num == 0);
assert_eq!(iter.next().unwrap(), &[44, 55]);
assert_eq!(iter.next().unwrap(), &[11, 22, 33]);
assert_eq!(iter.next(), None);As with split(), if the first or last element is matched, an empty
slice will be the first (or last) item returned by the iterator.
let v = &[0, 1, 1, 2, 3, 5, 8];
let mut it = v.rsplit(|n| *n % 2 == 0);
assert_eq!(it.next().unwrap(), &[]);
assert_eq!(it.next().unwrap(), &[3, 5]);
assert_eq!(it.next().unwrap(), &[1, 1]);
assert_eq!(it.next().unwrap(), &[]);
assert_eq!(it.next(), None);1.27.0 · sourcepub fn rsplit_mut<F>(&mut self, pred: F) -> RSplitMut<'_, T, F>where
F: FnMut(&T) -> bool,
pub fn rsplit_mut<F>(&mut self, pred: F) -> RSplitMut<'_, T, F>where
F: FnMut(&T) -> bool,
Returns an iterator over mutable subslices separated by elements that
match pred, starting at the end of the slice and working
backwards. The matched element is not contained in the subslices.
Examples
let mut v = [100, 400, 300, 200, 600, 500];
let mut count = 0;
for group in v.rsplit_mut(|num| *num % 3 == 0) {
count += 1;
group[0] = count;
}
assert_eq!(v, [3, 400, 300, 2, 600, 1]);1.0.0 · sourcepub fn splitn<F>(&self, n: usize, pred: F) -> SplitN<'_, T, F>where
F: FnMut(&T) -> bool,
pub fn splitn<F>(&self, n: usize, pred: F) -> SplitN<'_, T, F>where
F: FnMut(&T) -> bool,
Returns an iterator over subslices separated by elements that match
pred, limited to returning at most n items. The matched element is
not contained in the subslices.
The last element returned, if any, will contain the remainder of the slice.
Examples
Print the slice split once by numbers divisible by 3 (i.e., [10, 40],
[20, 60, 50]):
let v = [10, 40, 30, 20, 60, 50];
for group in v.splitn(2, |num| *num % 3 == 0) {
println!("{group:?}");
}1.0.0 · sourcepub fn splitn_mut<F>(&mut self, n: usize, pred: F) -> SplitNMut<'_, T, F>where
F: FnMut(&T) -> bool,
pub fn splitn_mut<F>(&mut self, n: usize, pred: F) -> SplitNMut<'_, T, F>where
F: FnMut(&T) -> bool,
Returns an iterator over subslices separated by elements that match
pred, limited to returning at most n items. The matched element is
not contained in the subslices.
The last element returned, if any, will contain the remainder of the slice.
Examples
let mut v = [10, 40, 30, 20, 60, 50];
for group in v.splitn_mut(2, |num| *num % 3 == 0) {
group[0] = 1;
}
assert_eq!(v, [1, 40, 30, 1, 60, 50]);1.0.0 · sourcepub fn rsplitn<F>(&self, n: usize, pred: F) -> RSplitN<'_, T, F>where
F: FnMut(&T) -> bool,
pub fn rsplitn<F>(&self, n: usize, pred: F) -> RSplitN<'_, T, F>where
F: FnMut(&T) -> bool,
Returns an iterator over subslices separated by elements that match
pred limited to returning at most n items. This starts at the end of
the slice and works backwards. The matched element is not contained in
the subslices.
The last element returned, if any, will contain the remainder of the slice.
Examples
Print the slice split once, starting from the end, by numbers divisible
by 3 (i.e., [50], [10, 40, 30, 20]):
let v = [10, 40, 30, 20, 60, 50];
for group in v.rsplitn(2, |num| *num % 3 == 0) {
println!("{group:?}");
}1.0.0 · sourcepub fn rsplitn_mut<F>(&mut self, n: usize, pred: F) -> RSplitNMut<'_, T, F>where
F: FnMut(&T) -> bool,
pub fn rsplitn_mut<F>(&mut self, n: usize, pred: F) -> RSplitNMut<'_, T, F>where
F: FnMut(&T) -> bool,
Returns an iterator over subslices separated by elements that match
pred limited to returning at most n items. This starts at the end of
the slice and works backwards. The matched element is not contained in
the subslices.
The last element returned, if any, will contain the remainder of the slice.
Examples
let mut s = [10, 40, 30, 20, 60, 50];
for group in s.rsplitn_mut(2, |num| *num % 3 == 0) {
group[0] = 1;
}
assert_eq!(s, [1, 40, 30, 20, 60, 1]);1.0.0 · sourcepub fn contains(&self, x: &T) -> boolwhere
T: PartialEq<T>,
pub fn contains(&self, x: &T) -> boolwhere
T: PartialEq<T>,
Returns true if the slice contains an element with the given value.
This operation is O(n).
Note that if you have a sorted slice, binary_search may be faster.
Examples
let v = [10, 40, 30];
assert!(v.contains(&30));
assert!(!v.contains(&50));If you do not have a &T, but some other value that you can compare
with one (for example, String implements PartialEq<str>), you can
use iter().any:
let v = [String::from("hello"), String::from("world")]; // slice of `String`
assert!(v.iter().any(|e| e == "hello")); // search with `&str`
assert!(!v.iter().any(|e| e == "hi"));1.0.0 · sourcepub fn starts_with(&self, needle: &[T]) -> boolwhere
T: PartialEq<T>,
pub fn starts_with(&self, needle: &[T]) -> boolwhere
T: PartialEq<T>,
Returns true if needle is a prefix of the slice.
Examples
let v = [10, 40, 30];
assert!(v.starts_with(&[10]));
assert!(v.starts_with(&[10, 40]));
assert!(!v.starts_with(&[50]));
assert!(!v.starts_with(&[10, 50]));Always returns true if needle is an empty slice:
let v = &[10, 40, 30];
assert!(v.starts_with(&[]));
let v: &[u8] = &[];
assert!(v.starts_with(&[]));1.0.0 · sourcepub fn ends_with(&self, needle: &[T]) -> boolwhere
T: PartialEq<T>,
pub fn ends_with(&self, needle: &[T]) -> boolwhere
T: PartialEq<T>,
Returns true if needle is a suffix of the slice.
Examples
let v = [10, 40, 30];
assert!(v.ends_with(&[30]));
assert!(v.ends_with(&[40, 30]));
assert!(!v.ends_with(&[50]));
assert!(!v.ends_with(&[50, 30]));Always returns true if needle is an empty slice:
let v = &[10, 40, 30];
assert!(v.ends_with(&[]));
let v: &[u8] = &[];
assert!(v.ends_with(&[]));1.51.0 · sourcepub fn strip_prefix<P>(&self, prefix: &P) -> Option<&[T]>where
P: SlicePattern<Item = T> + ?Sized,
T: PartialEq<T>,
pub fn strip_prefix<P>(&self, prefix: &P) -> Option<&[T]>where
P: SlicePattern<Item = T> + ?Sized,
T: PartialEq<T>,
Returns a subslice with the prefix removed.
If the slice starts with prefix, returns the subslice after the prefix, wrapped in Some.
If prefix is empty, simply returns the original slice.
If the slice does not start with prefix, returns None.
Examples
let v = &[10, 40, 30];
assert_eq!(v.strip_prefix(&[10]), Some(&[40, 30][..]));
assert_eq!(v.strip_prefix(&[10, 40]), Some(&[30][..]));
assert_eq!(v.strip_prefix(&[50]), None);
assert_eq!(v.strip_prefix(&[10, 50]), None);
let prefix : &str = "he";
assert_eq!(b"hello".strip_prefix(prefix.as_bytes()),
Some(b"llo".as_ref()));1.51.0 · sourcepub fn strip_suffix<P>(&self, suffix: &P) -> Option<&[T]>where
P: SlicePattern<Item = T> + ?Sized,
T: PartialEq<T>,
pub fn strip_suffix<P>(&self, suffix: &P) -> Option<&[T]>where
P: SlicePattern<Item = T> + ?Sized,
T: PartialEq<T>,
Returns a subslice with the suffix removed.
If the slice ends with suffix, returns the subslice before the suffix, wrapped in Some.
If suffix is empty, simply returns the original slice.
If the slice does not end with suffix, returns None.
Examples
let v = &[10, 40, 30];
assert_eq!(v.strip_suffix(&[30]), Some(&[10, 40][..]));
assert_eq!(v.strip_suffix(&[40, 30]), Some(&[10][..]));
assert_eq!(v.strip_suffix(&[50]), None);
assert_eq!(v.strip_suffix(&[50, 30]), None);1.0.0 · sourcepub fn binary_search(&self, x: &T) -> Result<usize, usize>where
T: Ord,
pub fn binary_search(&self, x: &T) -> Result<usize, usize>where
T: Ord,
Binary searches this slice for a given element.
This behaves similarly to contains if this slice is sorted.
If the value is found then Result::Ok is returned, containing the
index of the matching element. If there are multiple matches, then any
one of the matches could be returned. The index is chosen
deterministically, but is subject to change in future versions of Rust.
If the value is not found then Result::Err is returned, containing
the index where a matching element could be inserted while maintaining
sorted order.
See also binary_search_by, binary_search_by_key, and partition_point.
Examples
Looks up a series of four elements. The first is found, with a
uniquely determined position; the second and third are not
found; the fourth could match any position in [1, 4].
let s = [0, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55];
assert_eq!(s.binary_search(&13), Ok(9));
assert_eq!(s.binary_search(&4), Err(7));
assert_eq!(s.binary_search(&100), Err(13));
let r = s.binary_search(&1);
assert!(match r { Ok(1..=4) => true, _ => false, });If you want to insert an item to a sorted vector, while maintaining
sort order, consider using partition_point:
let mut s = vec![0, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55];
let num = 42;
let idx = s.partition_point(|&x| x < num);
// The above is equivalent to `let idx = s.binary_search(&num).unwrap_or_else(|x| x);`
s.insert(idx, num);
assert_eq!(s, [0, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 42, 55]);1.0.0 · sourcepub fn binary_search_by<'a, F>(&'a self, f: F) -> Result<usize, usize>where
F: FnMut(&'a T) -> Ordering,
pub fn binary_search_by<'a, F>(&'a self, f: F) -> Result<usize, usize>where
F: FnMut(&'a T) -> Ordering,
Binary searches this slice with a comparator function.
This behaves similarly to contains if this slice is sorted.
The comparator function should implement an order consistent
with the sort order of the underlying slice, returning an
order code that indicates whether its argument is Less,
Equal or Greater the desired target.
If the value is found then Result::Ok is returned, containing the
index of the matching element. If there are multiple matches, then any
one of the matches could be returned. The index is chosen
deterministically, but is subject to change in future versions of Rust.
If the value is not found then Result::Err is returned, containing
the index where a matching element could be inserted while maintaining
sorted order.
See also binary_search, binary_search_by_key, and partition_point.
Examples
Looks up a series of four elements. The first is found, with a
uniquely determined position; the second and third are not
found; the fourth could match any position in [1, 4].
let s = [0, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55];
let seek = 13;
assert_eq!(s.binary_search_by(|probe| probe.cmp(&seek)), Ok(9));
let seek = 4;
assert_eq!(s.binary_search_by(|probe| probe.cmp(&seek)), Err(7));
let seek = 100;
assert_eq!(s.binary_search_by(|probe| probe.cmp(&seek)), Err(13));
let seek = 1;
let r = s.binary_search_by(|probe| probe.cmp(&seek));
assert!(match r { Ok(1..=4) => true, _ => false, });1.10.0 · sourcepub fn binary_search_by_key<'a, B, F>(
&'a self,
b: &B,
f: F
) -> Result<usize, usize>where
F: FnMut(&'a T) -> B,
B: Ord,
pub fn binary_search_by_key<'a, B, F>(
&'a self,
b: &B,
f: F
) -> Result<usize, usize>where
F: FnMut(&'a T) -> B,
B: Ord,
Binary searches this slice with a key extraction function.
This behaves similarly to contains if this slice is sorted.
Assumes that the slice is sorted by the key, for instance with
sort_by_key using the same key extraction function.
If the value is found then Result::Ok is returned, containing the
index of the matching element. If there are multiple matches, then any
one of the matches could be returned. The index is chosen
deterministically, but is subject to change in future versions of Rust.
If the value is not found then Result::Err is returned, containing
the index where a matching element could be inserted while maintaining
sorted order.
See also binary_search, binary_search_by, and partition_point.
Examples
Looks up a series of four elements in a slice of pairs sorted by
their second elements. The first is found, with a uniquely
determined position; the second and third are not found; the
fourth could match any position in [1, 4].
let s = [(0, 0), (2, 1), (4, 1), (5, 1), (3, 1),
(1, 2), (2, 3), (4, 5), (5, 8), (3, 13),
(1, 21), (2, 34), (4, 55)];
assert_eq!(s.binary_search_by_key(&13, |&(a, b)| b), Ok(9));
assert_eq!(s.binary_search_by_key(&4, |&(a, b)| b), Err(7));
assert_eq!(s.binary_search_by_key(&100, |&(a, b)| b), Err(13));
let r = s.binary_search_by_key(&1, |&(a, b)| b);
assert!(match r { Ok(1..=4) => true, _ => false, });1.20.0 · sourcepub fn sort_unstable(&mut self)where
T: Ord,
pub fn sort_unstable(&mut self)where
T: Ord,
Sorts the slice, but might not preserve the order of equal elements.
This sort is unstable (i.e., may reorder equal elements), in-place (i.e., does not allocate), and O(n * log(n)) worst-case.
Current implementation
The current algorithm is based on pattern-defeating quicksort by Orson Peters, which combines the fast average case of randomized quicksort with the fast worst case of heapsort, while achieving linear time on slices with certain patterns. It uses some randomization to avoid degenerate cases, but with a fixed seed to always provide deterministic behavior.
It is typically faster than stable sorting, except in a few special cases, e.g., when the slice consists of several concatenated sorted sequences.
Examples
let mut v = [-5, 4, 1, -3, 2];
v.sort_unstable();
assert!(v == [-5, -3, 1, 2, 4]);1.20.0 · sourcepub fn sort_unstable_by<F>(&mut self, compare: F)where
F: FnMut(&T, &T) -> Ordering,
pub fn sort_unstable_by<F>(&mut self, compare: F)where
F: FnMut(&T, &T) -> Ordering,
Sorts the slice with a comparator function, but might not preserve the order of equal elements.
This sort is unstable (i.e., may reorder equal elements), in-place (i.e., does not allocate), and O(n * log(n)) worst-case.
The comparator function must define a total ordering for the elements in the slice. If
the ordering is not total, the order of the elements is unspecified. An order is a
total order if it is (for all a, b and c):
- total and antisymmetric: exactly one of
a < b,a == bora > bis true, and - transitive,
a < bandb < cimpliesa < c. The same must hold for both==and>.
For example, while f64 doesn’t implement Ord because NaN != NaN, we can use
partial_cmp as our sort function when we know the slice doesn’t contain a NaN.
let mut floats = [5f64, 4.0, 1.0, 3.0, 2.0];
floats.sort_unstable_by(|a, b| a.partial_cmp(b).unwrap());
assert_eq!(floats, [1.0, 2.0, 3.0, 4.0, 5.0]);Current implementation
The current algorithm is based on pattern-defeating quicksort by Orson Peters, which combines the fast average case of randomized quicksort with the fast worst case of heapsort, while achieving linear time on slices with certain patterns. It uses some randomization to avoid degenerate cases, but with a fixed seed to always provide deterministic behavior.
It is typically faster than stable sorting, except in a few special cases, e.g., when the slice consists of several concatenated sorted sequences.
Examples
let mut v = [5, 4, 1, 3, 2];
v.sort_unstable_by(|a, b| a.cmp(b));
assert!(v == [1, 2, 3, 4, 5]);
// reverse sorting
v.sort_unstable_by(|a, b| b.cmp(a));
assert!(v == [5, 4, 3, 2, 1]);1.20.0 · sourcepub fn sort_unstable_by_key<K, F>(&mut self, f: F)where
F: FnMut(&T) -> K,
K: Ord,
pub fn sort_unstable_by_key<K, F>(&mut self, f: F)where
F: FnMut(&T) -> K,
K: Ord,
Sorts the slice with a key extraction function, but might not preserve the order of equal elements.
This sort is unstable (i.e., may reorder equal elements), in-place (i.e., does not allocate), and O(m * n * log(n)) worst-case, where the key function is O(m).
Current implementation
The current algorithm is based on pattern-defeating quicksort by Orson Peters, which combines the fast average case of randomized quicksort with the fast worst case of heapsort, while achieving linear time on slices with certain patterns. It uses some randomization to avoid degenerate cases, but with a fixed seed to always provide deterministic behavior.
Due to its key calling strategy, sort_unstable_by_key
is likely to be slower than sort_by_cached_key in
cases where the key function is expensive.
Examples
let mut v = [-5i32, 4, 1, -3, 2];
v.sort_unstable_by_key(|k| k.abs());
assert!(v == [1, 2, -3, 4, -5]);1.49.0 · sourcepub fn select_nth_unstable(
&mut self,
index: usize
) -> (&mut [T], &mut T, &mut [T])where
T: Ord,
pub fn select_nth_unstable(
&mut self,
index: usize
) -> (&mut [T], &mut T, &mut [T])where
T: Ord,
Reorder the slice such that the element at index is at its final sorted position.
This reordering has the additional property that any value at position i < index will be
less than or equal to any value at a position j > index. Additionally, this reordering is
unstable (i.e. any number of equal elements may end up at position index), in-place
(i.e. does not allocate), and O(n) worst-case. This function is also/ known as “kth
element” in other libraries. It returns a triplet of the following values: all elements less
than the one at the given index, the value at the given index, and all elements greater than
the one at the given index.
Current implementation
The current algorithm is based on the quickselect portion of the same quicksort algorithm
used for sort_unstable.
Panics
Panics when index >= len(), meaning it always panics on empty slices.
Examples
let mut v = [-5i32, 4, 1, -3, 2];
// Find the median
v.select_nth_unstable(2);
// We are only guaranteed the slice will be one of the following, based on the way we sort
// about the specified index.
assert!(v == [-3, -5, 1, 2, 4] ||
v == [-5, -3, 1, 2, 4] ||
v == [-3, -5, 1, 4, 2] ||
v == [-5, -3, 1, 4, 2]);1.49.0 · sourcepub fn select_nth_unstable_by<F>(
&mut self,
index: usize,
compare: F
) -> (&mut [T], &mut T, &mut [T])where
F: FnMut(&T, &T) -> Ordering,
pub fn select_nth_unstable_by<F>(
&mut self,
index: usize,
compare: F
) -> (&mut [T], &mut T, &mut [T])where
F: FnMut(&T, &T) -> Ordering,
Reorder the slice with a comparator function such that the element at index is at its
final sorted position.
This reordering has the additional property that any value at position i < index will be
less than or equal to any value at a position j > index using the comparator function.
Additionally, this reordering is unstable (i.e. any number of equal elements may end up at
position index), in-place (i.e. does not allocate), and O(n) worst-case. This function
is also known as “kth element” in other libraries. It returns a triplet of the following
values: all elements less than the one at the given index, the value at the given index,
and all elements greater than the one at the given index, using the provided comparator
function.
Current implementation
The current algorithm is based on the quickselect portion of the same quicksort algorithm
used for sort_unstable.
Panics
Panics when index >= len(), meaning it always panics on empty slices.
Examples
let mut v = [-5i32, 4, 1, -3, 2];
// Find the median as if the slice were sorted in descending order.
v.select_nth_unstable_by(2, |a, b| b.cmp(a));
// We are only guaranteed the slice will be one of the following, based on the way we sort
// about the specified index.
assert!(v == [2, 4, 1, -5, -3] ||
v == [2, 4, 1, -3, -5] ||
v == [4, 2, 1, -5, -3] ||
v == [4, 2, 1, -3, -5]);1.49.0 · sourcepub fn select_nth_unstable_by_key<K, F>(
&mut self,
index: usize,
f: F
) -> (&mut [T], &mut T, &mut [T])where
F: FnMut(&T) -> K,
K: Ord,
pub fn select_nth_unstable_by_key<K, F>(
&mut self,
index: usize,
f: F
) -> (&mut [T], &mut T, &mut [T])where
F: FnMut(&T) -> K,
K: Ord,
Reorder the slice with a key extraction function such that the element at index is at its
final sorted position.
This reordering has the additional property that any value at position i < index will be
less than or equal to any value at a position j > index using the key extraction function.
Additionally, this reordering is unstable (i.e. any number of equal elements may end up at
position index), in-place (i.e. does not allocate), and O(n) worst-case. This function
is also known as “kth element” in other libraries. It returns a triplet of the following
values: all elements less than the one at the given index, the value at the given index, and
all elements greater than the one at the given index, using the provided key extraction
function.
Current implementation
The current algorithm is based on the quickselect portion of the same quicksort algorithm
used for sort_unstable.
Panics
Panics when index >= len(), meaning it always panics on empty slices.
Examples
let mut v = [-5i32, 4, 1, -3, 2];
// Return the median as if the array were sorted according to absolute value.
v.select_nth_unstable_by_key(2, |a| a.abs());
// We are only guaranteed the slice will be one of the following, based on the way we sort
// about the specified index.
assert!(v == [1, 2, -3, 4, -5] ||
v == [1, 2, -3, -5, 4] ||
v == [2, 1, -3, 4, -5] ||
v == [2, 1, -3, -5, 4]);sourcepub fn partition_dedup(&mut self) -> (&mut [T], &mut [T])where
T: PartialEq<T>,
🔬This is a nightly-only experimental API. (slice_partition_dedup)
pub fn partition_dedup(&mut self) -> (&mut [T], &mut [T])where
T: PartialEq<T>,
slice_partition_dedup)Moves all consecutive repeated elements to the end of the slice according to the
PartialEq trait implementation.
Returns two slices. The first contains no consecutive repeated elements. The second contains all the duplicates in no specified order.
If the slice is sorted, the first returned slice contains no duplicates.
Examples
#![feature(slice_partition_dedup)]
let mut slice = [1, 2, 2, 3, 3, 2, 1, 1];
let (dedup, duplicates) = slice.partition_dedup();
assert_eq!(dedup, [1, 2, 3, 2, 1]);
assert_eq!(duplicates, [2, 3, 1]);sourcepub fn partition_dedup_by<F>(&mut self, same_bucket: F) -> (&mut [T], &mut [T])where
F: FnMut(&mut T, &mut T) -> bool,
🔬This is a nightly-only experimental API. (slice_partition_dedup)
pub fn partition_dedup_by<F>(&mut self, same_bucket: F) -> (&mut [T], &mut [T])where
F: FnMut(&mut T, &mut T) -> bool,
slice_partition_dedup)Moves all but the first of consecutive elements to the end of the slice satisfying a given equality relation.
Returns two slices. The first contains no consecutive repeated elements. The second contains all the duplicates in no specified order.
The same_bucket function is passed references to two elements from the slice and
must determine if the elements compare equal. The elements are passed in opposite order
from their order in the slice, so if same_bucket(a, b) returns true, a is moved
at the end of the slice.
If the slice is sorted, the first returned slice contains no duplicates.
Examples
#![feature(slice_partition_dedup)]
let mut slice = ["foo", "Foo", "BAZ", "Bar", "bar", "baz", "BAZ"];
let (dedup, duplicates) = slice.partition_dedup_by(|a, b| a.eq_ignore_ascii_case(b));
assert_eq!(dedup, ["foo", "BAZ", "Bar", "baz"]);
assert_eq!(duplicates, ["bar", "Foo", "BAZ"]);sourcepub fn partition_dedup_by_key<K, F>(&mut self, key: F) -> (&mut [T], &mut [T])where
F: FnMut(&mut T) -> K,
K: PartialEq<K>,
🔬This is a nightly-only experimental API. (slice_partition_dedup)
pub fn partition_dedup_by_key<K, F>(&mut self, key: F) -> (&mut [T], &mut [T])where
F: FnMut(&mut T) -> K,
K: PartialEq<K>,
slice_partition_dedup)Moves all but the first of consecutive elements to the end of the slice that resolve to the same key.
Returns two slices. The first contains no consecutive repeated elements. The second contains all the duplicates in no specified order.
If the slice is sorted, the first returned slice contains no duplicates.
Examples
#![feature(slice_partition_dedup)]
let mut slice = [10, 20, 21, 30, 30, 20, 11, 13];
let (dedup, duplicates) = slice.partition_dedup_by_key(|i| *i / 10);
assert_eq!(dedup, [10, 20, 30, 20, 11]);
assert_eq!(duplicates, [21, 30, 13]);1.26.0 · sourcepub fn rotate_left(&mut self, mid: usize)
pub fn rotate_left(&mut self, mid: usize)
Rotates the slice in-place such that the first mid elements of the
slice move to the end while the last self.len() - mid elements move to
the front. After calling rotate_left, the element previously at index
mid will become the first element in the slice.
Panics
This function will panic if mid is greater than the length of the
slice. Note that mid == self.len() does not panic and is a no-op
rotation.
Complexity
Takes linear (in self.len()) time.
Examples
let mut a = ['a', 'b', 'c', 'd', 'e', 'f'];
a.rotate_left(2);
assert_eq!(a, ['c', 'd', 'e', 'f', 'a', 'b']);Rotating a subslice:
let mut a = ['a', 'b', 'c', 'd', 'e', 'f'];
a[1..5].rotate_left(1);
assert_eq!(a, ['a', 'c', 'd', 'e', 'b', 'f']);1.26.0 · sourcepub fn rotate_right(&mut self, k: usize)
pub fn rotate_right(&mut self, k: usize)
Rotates the slice in-place such that the first self.len() - k
elements of the slice move to the end while the last k elements move
to the front. After calling rotate_right, the element previously at
index self.len() - k will become the first element in the slice.
Panics
This function will panic if k is greater than the length of the
slice. Note that k == self.len() does not panic and is a no-op
rotation.
Complexity
Takes linear (in self.len()) time.
Examples
let mut a = ['a', 'b', 'c', 'd', 'e', 'f'];
a.rotate_right(2);
assert_eq!(a, ['e', 'f', 'a', 'b', 'c', 'd']);Rotate a subslice:
let mut a = ['a', 'b', 'c', 'd', 'e', 'f'];
a[1..5].rotate_right(1);
assert_eq!(a, ['a', 'e', 'b', 'c', 'd', 'f']);1.50.0 · sourcepub fn fill(&mut self, value: T)where
T: Clone,
pub fn fill(&mut self, value: T)where
T: Clone,
Fills self with elements by cloning value.
Examples
let mut buf = vec![0; 10];
buf.fill(1);
assert_eq!(buf, vec![1; 10]);1.51.0 · sourcepub fn fill_with<F>(&mut self, f: F)where
F: FnMut() -> T,
pub fn fill_with<F>(&mut self, f: F)where
F: FnMut() -> T,
Fills self with elements returned by calling a closure repeatedly.
This method uses a closure to create new values. If you’d rather
Clone a given value, use fill. If you want to use the Default
trait to generate values, you can pass Default::default as the
argument.
Examples
let mut buf = vec![1; 10];
buf.fill_with(Default::default);
assert_eq!(buf, vec![0; 10]);1.7.0 · sourcepub fn clone_from_slice(&mut self, src: &[T])where
T: Clone,
pub fn clone_from_slice(&mut self, src: &[T])where
T: Clone,
Copies the elements from src into self.
The length of src must be the same as self.
Panics
This function will panic if the two slices have different lengths.
Examples
Cloning two elements from a slice into another:
let src = [1, 2, 3, 4];
let mut dst = [0, 0];
// Because the slices have to be the same length,
// we slice the source slice from four elements
// to two. It will panic if we don't do this.
dst.clone_from_slice(&src[2..]);
assert_eq!(src, [1, 2, 3, 4]);
assert_eq!(dst, [3, 4]);Rust enforces that there can only be one mutable reference with no
immutable references to a particular piece of data in a particular
scope. Because of this, attempting to use clone_from_slice on a
single slice will result in a compile failure:
let mut slice = [1, 2, 3, 4, 5];
slice[..2].clone_from_slice(&slice[3..]); // compile fail!To work around this, we can use split_at_mut to create two distinct
sub-slices from a slice:
let mut slice = [1, 2, 3, 4, 5];
{
let (left, right) = slice.split_at_mut(2);
left.clone_from_slice(&right[1..]);
}
assert_eq!(slice, [4, 5, 3, 4, 5]);1.9.0 · sourcepub fn copy_from_slice(&mut self, src: &[T])where
T: Copy,
pub fn copy_from_slice(&mut self, src: &[T])where
T: Copy,
Copies all elements from src into self, using a memcpy.
The length of src must be the same as self.
If T does not implement Copy, use clone_from_slice.
Panics
This function will panic if the two slices have different lengths.
Examples
Copying two elements from a slice into another:
let src = [1, 2, 3, 4];
let mut dst = [0, 0];
// Because the slices have to be the same length,
// we slice the source slice from four elements
// to two. It will panic if we don't do this.
dst.copy_from_slice(&src[2..]);
assert_eq!(src, [1, 2, 3, 4]);
assert_eq!(dst, [3, 4]);Rust enforces that there can only be one mutable reference with no
immutable references to a particular piece of data in a particular
scope. Because of this, attempting to use copy_from_slice on a
single slice will result in a compile failure:
let mut slice = [1, 2, 3, 4, 5];
slice[..2].copy_from_slice(&slice[3..]); // compile fail!To work around this, we can use split_at_mut to create two distinct
sub-slices from a slice:
let mut slice = [1, 2, 3, 4, 5];
{
let (left, right) = slice.split_at_mut(2);
left.copy_from_slice(&right[1..]);
}
assert_eq!(slice, [4, 5, 3, 4, 5]);1.37.0 · sourcepub fn copy_within<R>(&mut self, src: R, dest: usize)where
R: RangeBounds<usize>,
T: Copy,
pub fn copy_within<R>(&mut self, src: R, dest: usize)where
R: RangeBounds<usize>,
T: Copy,
Copies elements from one part of the slice to another part of itself, using a memmove.
src is the range within self to copy from. dest is the starting
index of the range within self to copy to, which will have the same
length as src. The two ranges may overlap. The ends of the two ranges
must be less than or equal to self.len().
Panics
This function will panic if either range exceeds the end of the slice,
or if the end of src is before the start.
Examples
Copying four bytes within a slice:
let mut bytes = *b"Hello, World!";
bytes.copy_within(1..5, 8);
assert_eq!(&bytes, b"Hello, Wello!");1.27.0 · sourcepub fn swap_with_slice(&mut self, other: &mut [T])
pub fn swap_with_slice(&mut self, other: &mut [T])
Swaps all elements in self with those in other.
The length of other must be the same as self.
Panics
This function will panic if the two slices have different lengths.
Example
Swapping two elements across slices:
let mut slice1 = [0, 0];
let mut slice2 = [1, 2, 3, 4];
slice1.swap_with_slice(&mut slice2[2..]);
assert_eq!(slice1, [3, 4]);
assert_eq!(slice2, [1, 2, 0, 0]);Rust enforces that there can only be one mutable reference to a
particular piece of data in a particular scope. Because of this,
attempting to use swap_with_slice on a single slice will result in
a compile failure:
let mut slice = [1, 2, 3, 4, 5];
slice[..2].swap_with_slice(&mut slice[3..]); // compile fail!To work around this, we can use split_at_mut to create two distinct
mutable sub-slices from a slice:
let mut slice = [1, 2, 3, 4, 5];
{
let (left, right) = slice.split_at_mut(2);
left.swap_with_slice(&mut right[1..]);
}
assert_eq!(slice, [4, 5, 3, 1, 2]);1.30.0 · sourcepub unsafe fn align_to<U>(&self) -> (&[T], &[U], &[T])
pub unsafe fn align_to<U>(&self) -> (&[T], &[U], &[T])
Transmute the slice to a slice of another type, ensuring alignment of the types is maintained.
This method splits the slice into three distinct slices: prefix, correctly aligned middle slice of a new type, and the suffix slice. The method may make the middle slice the greatest length possible for a given type and input slice, but only your algorithm’s performance should depend on that, not its correctness. It is permissible for all of the input data to be returned as the prefix or suffix slice.
This method has no purpose when either input element T or output element U are
zero-sized and will return the original slice without splitting anything.
Safety
This method is essentially a transmute with respect to the elements in the returned
middle slice, so all the usual caveats pertaining to transmute::<T, U> also apply here.
Examples
Basic usage:
unsafe {
let bytes: [u8; 7] = [1, 2, 3, 4, 5, 6, 7];
let (prefix, shorts, suffix) = bytes.align_to::<u16>();
// less_efficient_algorithm_for_bytes(prefix);
// more_efficient_algorithm_for_aligned_shorts(shorts);
// less_efficient_algorithm_for_bytes(suffix);
}1.30.0 · sourcepub unsafe fn align_to_mut<U>(&mut self) -> (&mut [T], &mut [U], &mut [T])
pub unsafe fn align_to_mut<U>(&mut self) -> (&mut [T], &mut [U], &mut [T])
Transmute the slice to a slice of another type, ensuring alignment of the types is maintained.
This method splits the slice into three distinct slices: prefix, correctly aligned middle slice of a new type, and the suffix slice. The method may make the middle slice the greatest length possible for a given type and input slice, but only your algorithm’s performance should depend on that, not its correctness. It is permissible for all of the input data to be returned as the prefix or suffix slice.
This method has no purpose when either input element T or output element U are
zero-sized and will return the original slice without splitting anything.
Safety
This method is essentially a transmute with respect to the elements in the returned
middle slice, so all the usual caveats pertaining to transmute::<T, U> also apply here.
Examples
Basic usage:
unsafe {
let mut bytes: [u8; 7] = [1, 2, 3, 4, 5, 6, 7];
let (prefix, shorts, suffix) = bytes.align_to_mut::<u16>();
// less_efficient_algorithm_for_bytes(prefix);
// more_efficient_algorithm_for_aligned_shorts(shorts);
// less_efficient_algorithm_for_bytes(suffix);
}sourcepub fn as_simd<const LANES: usize>(&self) -> (&[T], &[Simd<T, LANES>], &[T])where
T: SimdElement,
Simd<T, LANES>: AsRef<[T; LANES]>,
LaneCount<LANES>: SupportedLaneCount,
🔬This is a nightly-only experimental API. (portable_simd)
pub fn as_simd<const LANES: usize>(&self) -> (&[T], &[Simd<T, LANES>], &[T])where
T: SimdElement,
Simd<T, LANES>: AsRef<[T; LANES]>,
LaneCount<LANES>: SupportedLaneCount,
portable_simd)Split a slice into a prefix, a middle of aligned SIMD types, and a suffix.
This is a safe wrapper around slice::align_to, so has the same weak
postconditions as that method. You’re only assured that
self.len() == prefix.len() + middle.len() * LANES + suffix.len().
Notably, all of the following are possible:
prefix.len() >= LANES.middle.is_empty()despiteself.len() >= 3 * LANES.suffix.len() >= LANES.
That said, this is a safe method, so if you’re only writing safe code, then this can at most cause incorrect logic, not unsoundness.
Panics
This will panic if the size of the SIMD type is different from
LANES times that of the scalar.
At the time of writing, the trait restrictions on Simd<T, LANES> keeps
that from ever happening, as only power-of-two numbers of lanes are
supported. It’s possible that, in the future, those restrictions might
be lifted in a way that would make it possible to see panics from this
method for something like LANES == 3.
Examples
#![feature(portable_simd)]
use core::simd::SimdFloat;
let short = &[1, 2, 3];
let (prefix, middle, suffix) = short.as_simd::<4>();
assert_eq!(middle, []); // Not enough elements for anything in the middle
// They might be split in any possible way between prefix and suffix
let it = prefix.iter().chain(suffix).copied();
assert_eq!(it.collect::<Vec<_>>(), vec![1, 2, 3]);
fn basic_simd_sum(x: &[f32]) -> f32 {
use std::ops::Add;
use std::simd::f32x4;
let (prefix, middle, suffix) = x.as_simd();
let sums = f32x4::from_array([
prefix.iter().copied().sum(),
0.0,
0.0,
suffix.iter().copied().sum(),
]);
let sums = middle.iter().copied().fold(sums, f32x4::add);
sums.reduce_sum()
}
let numbers: Vec<f32> = (1..101).map(|x| x as _).collect();
assert_eq!(basic_simd_sum(&numbers[1..99]), 4949.0);sourcepub fn as_simd_mut<const LANES: usize>(
&mut self
) -> (&mut [T], &mut [Simd<T, LANES>], &mut [T])where
T: SimdElement,
Simd<T, LANES>: AsMut<[T; LANES]>,
LaneCount<LANES>: SupportedLaneCount,
🔬This is a nightly-only experimental API. (portable_simd)
pub fn as_simd_mut<const LANES: usize>(
&mut self
) -> (&mut [T], &mut [Simd<T, LANES>], &mut [T])where
T: SimdElement,
Simd<T, LANES>: AsMut<[T; LANES]>,
LaneCount<LANES>: SupportedLaneCount,
portable_simd)Split a slice into a prefix, a middle of aligned SIMD types, and a suffix.
This is a safe wrapper around slice::align_to_mut, so has the same weak
postconditions as that method. You’re only assured that
self.len() == prefix.len() + middle.len() * LANES + suffix.len().
Notably, all of the following are possible:
prefix.len() >= LANES.middle.is_empty()despiteself.len() >= 3 * LANES.suffix.len() >= LANES.
That said, this is a safe method, so if you’re only writing safe code, then this can at most cause incorrect logic, not unsoundness.
This is the mutable version of slice::as_simd; see that for examples.
Panics
This will panic if the size of the SIMD type is different from
LANES times that of the scalar.
At the time of writing, the trait restrictions on Simd<T, LANES> keeps
that from ever happening, as only power-of-two numbers of lanes are
supported. It’s possible that, in the future, those restrictions might
be lifted in a way that would make it possible to see panics from this
method for something like LANES == 3.
sourcepub fn is_sorted(&self) -> boolwhere
T: PartialOrd<T>,
🔬This is a nightly-only experimental API. (is_sorted)
pub fn is_sorted(&self) -> boolwhere
T: PartialOrd<T>,
is_sorted)Checks if the elements of this slice are sorted.
That is, for each element a and its following element b, a <= b must hold. If the
slice yields exactly zero or one element, true is returned.
Note that if Self::Item is only PartialOrd, but not Ord, the above definition
implies that this function returns false if any two consecutive items are not
comparable.
Examples
#![feature(is_sorted)]
let empty: [i32; 0] = [];
assert!([1, 2, 2, 9].is_sorted());
assert!(![1, 3, 2, 4].is_sorted());
assert!([0].is_sorted());
assert!(empty.is_sorted());
assert!(![0.0, 1.0, f32::NAN].is_sorted());sourcepub fn is_sorted_by<F>(&self, compare: F) -> boolwhere
F: FnMut(&T, &T) -> Option<Ordering>,
🔬This is a nightly-only experimental API. (is_sorted)
pub fn is_sorted_by<F>(&self, compare: F) -> boolwhere
F: FnMut(&T, &T) -> Option<Ordering>,
is_sorted)Checks if the elements of this slice are sorted using the given comparator function.
Instead of using PartialOrd::partial_cmp, this function uses the given compare
function to determine the ordering of two elements. Apart from that, it’s equivalent to
is_sorted; see its documentation for more information.
sourcepub fn is_sorted_by_key<F, K>(&self, f: F) -> boolwhere
F: FnMut(&T) -> K,
K: PartialOrd<K>,
🔬This is a nightly-only experimental API. (is_sorted)
pub fn is_sorted_by_key<F, K>(&self, f: F) -> boolwhere
F: FnMut(&T) -> K,
K: PartialOrd<K>,
is_sorted)Checks if the elements of this slice are sorted using the given key extraction function.
Instead of comparing the slice’s elements directly, this function compares the keys of the
elements, as determined by f. Apart from that, it’s equivalent to is_sorted; see its
documentation for more information.
Examples
#![feature(is_sorted)]
assert!(["c", "bb", "aaa"].is_sorted_by_key(|s| s.len()));
assert!(![-2i32, -1, 0, 3].is_sorted_by_key(|n| n.abs()));1.52.0 · sourcepub fn partition_point<P>(&self, pred: P) -> usizewhere
P: FnMut(&T) -> bool,
pub fn partition_point<P>(&self, pred: P) -> usizewhere
P: FnMut(&T) -> bool,
Returns the index of the partition point according to the given predicate (the index of the first element of the second partition).
The slice is assumed to be partitioned according to the given predicate. This means that all elements for which the predicate returns true are at the start of the slice and all elements for which the predicate returns false are at the end. For example, [7, 15, 3, 5, 4, 12, 6] is a partitioned under the predicate x % 2 != 0 (all odd numbers are at the start, all even at the end).
If this slice is not partitioned, the returned result is unspecified and meaningless, as this method performs a kind of binary search.
See also binary_search, binary_search_by, and binary_search_by_key.
Examples
let v = [1, 2, 3, 3, 5, 6, 7];
let i = v.partition_point(|&x| x < 5);
assert_eq!(i, 4);
assert!(v[..i].iter().all(|&x| x < 5));
assert!(v[i..].iter().all(|&x| !(x < 5)));If you want to insert an item to a sorted vector, while maintaining sort order:
let mut s = vec![0, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55];
let num = 42;
let idx = s.partition_point(|&x| x < num);
s.insert(idx, num);
assert_eq!(s, [0, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 42, 55]);sourcepub fn take<R>(self: &mut &'a [T], range: R) -> Option<&'a [T]>where
R: OneSidedRange<usize>,
🔬This is a nightly-only experimental API. (slice_take)
pub fn take<R>(self: &mut &'a [T], range: R) -> Option<&'a [T]>where
R: OneSidedRange<usize>,
slice_take)Removes the subslice corresponding to the given range and returns a reference to it.
Returns None and does not modify the slice if the given
range is out of bounds.
Note that this method only accepts one-sided ranges such as
2.. or ..6, but not 2..6.
Examples
Taking the first three elements of a slice:
#![feature(slice_take)]
let mut slice: &[_] = &['a', 'b', 'c', 'd'];
let mut first_three = slice.take(..3).unwrap();
assert_eq!(slice, &['d']);
assert_eq!(first_three, &['a', 'b', 'c']);Taking the last two elements of a slice:
#![feature(slice_take)]
let mut slice: &[_] = &['a', 'b', 'c', 'd'];
let mut tail = slice.take(2..).unwrap();
assert_eq!(slice, &['a', 'b']);
assert_eq!(tail, &['c', 'd']);Getting None when range is out of bounds:
#![feature(slice_take)]
let mut slice: &[_] = &['a', 'b', 'c', 'd'];
assert_eq!(None, slice.take(5..));
assert_eq!(None, slice.take(..5));
assert_eq!(None, slice.take(..=4));
let expected: &[char] = &['a', 'b', 'c', 'd'];
assert_eq!(Some(expected), slice.take(..4));sourcepub fn take_mut<R>(self: &mut &'a mut [T], range: R) -> Option<&'a mut [T]>where
R: OneSidedRange<usize>,
🔬This is a nightly-only experimental API. (slice_take)
pub fn take_mut<R>(self: &mut &'a mut [T], range: R) -> Option<&'a mut [T]>where
R: OneSidedRange<usize>,
slice_take)Removes the subslice corresponding to the given range and returns a mutable reference to it.
Returns None and does not modify the slice if the given
range is out of bounds.
Note that this method only accepts one-sided ranges such as
2.. or ..6, but not 2..6.
Examples
Taking the first three elements of a slice:
#![feature(slice_take)]
let mut slice: &mut [_] = &mut ['a', 'b', 'c', 'd'];
let mut first_three = slice.take_mut(..3).unwrap();
assert_eq!(slice, &mut ['d']);
assert_eq!(first_three, &mut ['a', 'b', 'c']);Taking the last two elements of a slice:
#![feature(slice_take)]
let mut slice: &mut [_] = &mut ['a', 'b', 'c', 'd'];
let mut tail = slice.take_mut(2..).unwrap();
assert_eq!(slice, &mut ['a', 'b']);
assert_eq!(tail, &mut ['c', 'd']);Getting None when range is out of bounds:
#![feature(slice_take)]
let mut slice: &mut [_] = &mut ['a', 'b', 'c', 'd'];
assert_eq!(None, slice.take_mut(5..));
assert_eq!(None, slice.take_mut(..5));
assert_eq!(None, slice.take_mut(..=4));
let expected: &mut [_] = &mut ['a', 'b', 'c', 'd'];
assert_eq!(Some(expected), slice.take_mut(..4));sourcepub fn take_first(self: &mut &'a [T]) -> Option<&'a T>
🔬This is a nightly-only experimental API. (slice_take)
pub fn take_first(self: &mut &'a [T]) -> Option<&'a T>
slice_take)Removes the first element of the slice and returns a reference to it.
Returns None if the slice is empty.
Examples
#![feature(slice_take)]
let mut slice: &[_] = &['a', 'b', 'c'];
let first = slice.take_first().unwrap();
assert_eq!(slice, &['b', 'c']);
assert_eq!(first, &'a');sourcepub fn take_first_mut(self: &mut &'a mut [T]) -> Option<&'a mut T>
🔬This is a nightly-only experimental API. (slice_take)
pub fn take_first_mut(self: &mut &'a mut [T]) -> Option<&'a mut T>
slice_take)Removes the first element of the slice and returns a mutable reference to it.
Returns None if the slice is empty.
Examples
#![feature(slice_take)]
let mut slice: &mut [_] = &mut ['a', 'b', 'c'];
let first = slice.take_first_mut().unwrap();
*first = 'd';
assert_eq!(slice, &['b', 'c']);
assert_eq!(first, &'d');sourcepub fn take_last(self: &mut &'a [T]) -> Option<&'a T>
🔬This is a nightly-only experimental API. (slice_take)
pub fn take_last(self: &mut &'a [T]) -> Option<&'a T>
slice_take)Removes the last element of the slice and returns a reference to it.
Returns None if the slice is empty.
Examples
#![feature(slice_take)]
let mut slice: &[_] = &['a', 'b', 'c'];
let last = slice.take_last().unwrap();
assert_eq!(slice, &['a', 'b']);
assert_eq!(last, &'c');sourcepub fn take_last_mut(self: &mut &'a mut [T]) -> Option<&'a mut T>
🔬This is a nightly-only experimental API. (slice_take)
pub fn take_last_mut(self: &mut &'a mut [T]) -> Option<&'a mut T>
slice_take)Removes the last element of the slice and returns a mutable reference to it.
Returns None if the slice is empty.
Examples
#![feature(slice_take)]
let mut slice: &mut [_] = &mut ['a', 'b', 'c'];
let last = slice.take_last_mut().unwrap();
*last = 'd';
assert_eq!(slice, &['a', 'b']);
assert_eq!(last, &'d');1.23.0 · sourcepub fn to_ascii_uppercase(&self) -> Vec<u8, Global>ⓘNotable traits for Vec<u8, A>impl<A> Write for Vec<u8, A>where
A: Allocator,
pub fn to_ascii_uppercase(&self) -> Vec<u8, Global>ⓘNotable traits for Vec<u8, A>impl<A> Write for Vec<u8, A>where
A: Allocator,
A: Allocator,
Returns a vector containing a copy of this slice where each byte is mapped to its ASCII upper case equivalent.
ASCII letters ‘a’ to ‘z’ are mapped to ‘A’ to ‘Z’, but non-ASCII letters are unchanged.
To uppercase the value in-place, use make_ascii_uppercase.
1.23.0 · sourcepub fn to_ascii_lowercase(&self) -> Vec<u8, Global>ⓘNotable traits for Vec<u8, A>impl<A> Write for Vec<u8, A>where
A: Allocator,
pub fn to_ascii_lowercase(&self) -> Vec<u8, Global>ⓘNotable traits for Vec<u8, A>impl<A> Write for Vec<u8, A>where
A: Allocator,
A: Allocator,
Returns a vector containing a copy of this slice where each byte is mapped to its ASCII lower case equivalent.
ASCII letters ‘A’ to ‘Z’ are mapped to ‘a’ to ‘z’, but non-ASCII letters are unchanged.
To lowercase the value in-place, use make_ascii_lowercase.
1.0.0 · sourcepub fn sort(&mut self)where
T: Ord,
pub fn sort(&mut self)where
T: Ord,
Sorts the slice.
This sort is stable (i.e., does not reorder equal elements) and O(n * log(n)) worst-case.
When applicable, unstable sorting is preferred because it is generally faster than stable
sorting and it doesn’t allocate auxiliary memory.
See sort_unstable.
Current implementation
The current algorithm is an adaptive, iterative merge sort inspired by timsort. It is designed to be very fast in cases where the slice is nearly sorted, or consists of two or more sorted sequences concatenated one after another.
Also, it allocates temporary storage half the size of self, but for short slices a
non-allocating insertion sort is used instead.
Examples
let mut v = [-5, 4, 1, -3, 2];
v.sort();
assert!(v == [-5, -3, 1, 2, 4]);1.0.0 · sourcepub fn sort_by<F>(&mut self, compare: F)where
F: FnMut(&T, &T) -> Ordering,
pub fn sort_by<F>(&mut self, compare: F)where
F: FnMut(&T, &T) -> Ordering,
Sorts the slice with a comparator function.
This sort is stable (i.e., does not reorder equal elements) and O(n * log(n)) worst-case.
The comparator function must define a total ordering for the elements in the slice. If
the ordering is not total, the order of the elements is unspecified. An order is a
total order if it is (for all a, b and c):
- total and antisymmetric: exactly one of
a < b,a == bora > bis true, and - transitive,
a < bandb < cimpliesa < c. The same must hold for both==and>.
For example, while f64 doesn’t implement Ord because NaN != NaN, we can use
partial_cmp as our sort function when we know the slice doesn’t contain a NaN.
let mut floats = [5f64, 4.0, 1.0, 3.0, 2.0];
floats.sort_by(|a, b| a.partial_cmp(b).unwrap());
assert_eq!(floats, [1.0, 2.0, 3.0, 4.0, 5.0]);When applicable, unstable sorting is preferred because it is generally faster than stable
sorting and it doesn’t allocate auxiliary memory.
See sort_unstable_by.
Current implementation
The current algorithm is an adaptive, iterative merge sort inspired by timsort. It is designed to be very fast in cases where the slice is nearly sorted, or consists of two or more sorted sequences concatenated one after another.
Also, it allocates temporary storage half the size of self, but for short slices a
non-allocating insertion sort is used instead.
Examples
let mut v = [5, 4, 1, 3, 2];
v.sort_by(|a, b| a.cmp(b));
assert!(v == [1, 2, 3, 4, 5]);
// reverse sorting
v.sort_by(|a, b| b.cmp(a));
assert!(v == [5, 4, 3, 2, 1]);1.7.0 · sourcepub fn sort_by_key<K, F>(&mut self, f: F)where
F: FnMut(&T) -> K,
K: Ord,
pub fn sort_by_key<K, F>(&mut self, f: F)where
F: FnMut(&T) -> K,
K: Ord,
Sorts the slice with a key extraction function.
This sort is stable (i.e., does not reorder equal elements) and O(m * n * log(n)) worst-case, where the key function is O(m).
For expensive key functions (e.g. functions that are not simple property accesses or
basic operations), sort_by_cached_key is likely to be
significantly faster, as it does not recompute element keys.
When applicable, unstable sorting is preferred because it is generally faster than stable
sorting and it doesn’t allocate auxiliary memory.
See sort_unstable_by_key.
Current implementation
The current algorithm is an adaptive, iterative merge sort inspired by timsort. It is designed to be very fast in cases where the slice is nearly sorted, or consists of two or more sorted sequences concatenated one after another.
Also, it allocates temporary storage half the size of self, but for short slices a
non-allocating insertion sort is used instead.
Examples
let mut v = [-5i32, 4, 1, -3, 2];
v.sort_by_key(|k| k.abs());
assert!(v == [1, 2, -3, 4, -5]);1.34.0 · sourcepub fn sort_by_cached_key<K, F>(&mut self, f: F)where
F: FnMut(&T) -> K,
K: Ord,
pub fn sort_by_cached_key<K, F>(&mut self, f: F)where
F: FnMut(&T) -> K,
K: Ord,
Sorts the slice with a key extraction function.
During sorting, the key function is called at most once per element, by using temporary storage to remember the results of key evaluation. The order of calls to the key function is unspecified and may change in future versions of the standard library.
This sort is stable (i.e., does not reorder equal elements) and O(m * n + n * log(n)) worst-case, where the key function is O(m).
For simple key functions (e.g., functions that are property accesses or
basic operations), sort_by_key is likely to be
faster.
Current implementation
The current algorithm is based on pattern-defeating quicksort by Orson Peters, which combines the fast average case of randomized quicksort with the fast worst case of heapsort, while achieving linear time on slices with certain patterns. It uses some randomization to avoid degenerate cases, but with a fixed seed to always provide deterministic behavior.
In the worst case, the algorithm allocates temporary storage in a Vec<(K, usize)> the
length of the slice.
Examples
let mut v = [-5i32, 4, 32, -3, 2];
v.sort_by_cached_key(|k| k.to_string());
assert!(v == [-3, -5, 2, 32, 4]);1.0.0 · sourcepub fn to_vec(&self) -> Vec<T, Global>ⓘNotable traits for Vec<u8, A>impl<A> Write for Vec<u8, A>where
A: Allocator,where
T: Clone,
pub fn to_vec(&self) -> Vec<T, Global>ⓘNotable traits for Vec<u8, A>impl<A> Write for Vec<u8, A>where
A: Allocator,where
T: Clone,
A: Allocator,
Copies self into a new Vec.
Examples
let s = [10, 40, 30];
let x = s.to_vec();
// Here, `s` and `x` can be modified independently.sourcepub fn to_vec_in<A>(&self, alloc: A) -> Vec<T, A>ⓘNotable traits for Vec<u8, A>impl<A> Write for Vec<u8, A>where
A: Allocator,where
A: Allocator,
T: Clone,
🔬This is a nightly-only experimental API. (allocator_api)
pub fn to_vec_in<A>(&self, alloc: A) -> Vec<T, A>ⓘNotable traits for Vec<u8, A>impl<A> Write for Vec<u8, A>where
A: Allocator,where
A: Allocator,
T: Clone,
A: Allocator,
allocator_api)Copies self into a new Vec with an allocator.
Examples
#![feature(allocator_api)]
use std::alloc::System;
let s = [10, 40, 30];
let x = s.to_vec_in(System);
// Here, `s` and `x` can be modified independently.1.40.0 · sourcepub fn repeat(&self, n: usize) -> Vec<T, Global>ⓘNotable traits for Vec<u8, A>impl<A> Write for Vec<u8, A>where
A: Allocator,where
T: Copy,
pub fn repeat(&self, n: usize) -> Vec<T, Global>ⓘNotable traits for Vec<u8, A>impl<A> Write for Vec<u8, A>where
A: Allocator,where
T: Copy,
A: Allocator,
1.0.0 · sourcepub fn concat<Item>(&self) -> <[T] as Concat<Item>>::OutputⓘNotable traits for &[u8]impl Read for &[u8]impl Write for &mut [u8]where
Item: ?Sized,
[T]: Concat<Item>,
pub fn concat<Item>(&self) -> <[T] as Concat<Item>>::OutputⓘNotable traits for &[u8]impl Read for &[u8]impl Write for &mut [u8]where
Item: ?Sized,
[T]: Concat<Item>,
Flattens a slice of T into a single value Self::Output.
Examples
assert_eq!(["hello", "world"].concat(), "helloworld");
assert_eq!([[1, 2], [3, 4]].concat(), [1, 2, 3, 4]);1.3.0 · sourcepub fn join<Separator>(&self, sep: Separator) -> <[T] as Join<Separator>>::OutputⓘNotable traits for &[u8]impl Read for &[u8]impl Write for &mut [u8]where
[T]: Join<Separator>,
pub fn join<Separator>(&self, sep: Separator) -> <[T] as Join<Separator>>::OutputⓘNotable traits for &[u8]impl Read for &[u8]impl Write for &mut [u8]where
[T]: Join<Separator>,
Flattens a slice of T into a single value Self::Output, placing a
given separator between each.
Examples
assert_eq!(["hello", "world"].join(" "), "hello world");
assert_eq!([[1, 2], [3, 4]].join(&0), [1, 2, 0, 3, 4]);
assert_eq!([[1, 2], [3, 4]].join(&[0, 0][..]), [1, 2, 0, 0, 3, 4]);1.0.0 · sourcepub fn connect<Separator>(
&self,
sep: Separator
) -> <[T] as Join<Separator>>::OutputⓘNotable traits for &[u8]impl Read for &[u8]impl Write for &mut [u8]where
[T]: Join<Separator>,
👎Deprecated since 1.3.0: renamed to join
pub fn connect<Separator>(
&self,
sep: Separator
) -> <[T] as Join<Separator>>::OutputⓘNotable traits for &[u8]impl Read for &[u8]impl Write for &mut [u8]where
[T]: Join<Separator>,
renamed to join
Flattens a slice of T into a single value Self::Output, placing a
given separator between each.
Examples
assert_eq!(["hello", "world"].connect(" "), "hello world");
assert_eq!([[1, 2], [3, 4]].connect(&0), [1, 2, 0, 3, 4]);Trait Implementations
sourceimpl<T> AsMut<[T]> for NonEmptyVec<T>
impl<T> AsMut<[T]> for NonEmptyVec<T>
sourceimpl<T> AsMut<NonEmptySlice<T>> for NonEmptyVec<T>
impl<T> AsMut<NonEmptySlice<T>> for NonEmptyVec<T>
sourcefn as_mut(&mut self) -> &mut NonEmptySlice<T>
fn as_mut(&mut self) -> &mut NonEmptySlice<T>
sourceimpl<T> AsRef<[T]> for NonEmptyVec<T>
impl<T> AsRef<[T]> for NonEmptyVec<T>
sourceimpl<T> AsRef<NonEmptySlice<T>> for NonEmptyVec<T>
impl<T> AsRef<NonEmptySlice<T>> for NonEmptyVec<T>
sourcefn as_ref(&self) -> &NonEmptySlice<T>
fn as_ref(&self) -> &NonEmptySlice<T>
sourceimpl<T> AsRef<Vec<T, Global>> for NonEmptyVec<T>
impl<T> AsRef<Vec<T, Global>> for NonEmptyVec<T>
sourceimpl<T> Borrow<[T]> for NonEmptyVec<T>
impl<T> Borrow<[T]> for NonEmptyVec<T>
sourceimpl<T> Borrow<NonEmptySlice<T>> for NonEmptyVec<T>
impl<T> Borrow<NonEmptySlice<T>> for NonEmptyVec<T>
sourcefn borrow(&self) -> &NonEmptySlice<T>
fn borrow(&self) -> &NonEmptySlice<T>
sourceimpl<T> BorrowMut<[T]> for NonEmptyVec<T>
impl<T> BorrowMut<[T]> for NonEmptyVec<T>
sourceimpl<T> BorrowMut<NonEmptySlice<T>> for NonEmptyVec<T>
impl<T> BorrowMut<NonEmptySlice<T>> for NonEmptyVec<T>
sourcefn borrow_mut(&mut self) -> &mut NonEmptySlice<T>
fn borrow_mut(&mut self) -> &mut NonEmptySlice<T>
sourceimpl<T> Clone for NonEmptyVec<T>where
T: Clone,
impl<T> Clone for NonEmptyVec<T>where
T: Clone,
sourceimpl<T> Debug for NonEmptyVec<T>where
T: Debug,
impl<T> Debug for NonEmptyVec<T>where
T: Debug,
sourceimpl<T> Deref for NonEmptyVec<T>
impl<T> Deref for NonEmptyVec<T>
type Target = NonEmptySlice<T>
type Target = NonEmptySlice<T>
sourceimpl<T> DerefMut for NonEmptyVec<T>
impl<T> DerefMut for NonEmptyVec<T>
sourceimpl<'de, T> Deserialize<'de> for NonEmptyVec<T>where
T: Deserialize<'de>,
Available on crate feature serde and non-no_global_oom_handling only.
impl<'de, T> Deserialize<'de> for NonEmptyVec<T>where
T: Deserialize<'de>,
serde and non-no_global_oom_handling only.sourcefn deserialize<D>(deserializer: D) -> Result<Self, D::Error>where
D: Deserializer<'de>,
fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>where
D: Deserializer<'de>,
sourceimpl<'a, T> Extend<&'a T> for NonEmptyVec<T>where
T: 'a + Copy,
Available on non-no_global_oom_handling only.
impl<'a, T> Extend<&'a T> for NonEmptyVec<T>where
T: 'a + Copy,
no_global_oom_handling only.sourcefn extend<I: IntoIterator<Item = &'a T>>(&mut self, iter: I)
fn extend<I: IntoIterator<Item = &'a T>>(&mut self, iter: I)
sourcefn extend_one(&mut self, item: A)
fn extend_one(&mut self, item: A)
extend_one)sourcefn extend_reserve(&mut self, additional: usize)
fn extend_reserve(&mut self, additional: usize)
extend_one)sourceimpl<T> Extend<T> for NonEmptyVec<T>
Available on non-no_global_oom_handling only.
impl<T> Extend<T> for NonEmptyVec<T>
no_global_oom_handling only.sourcefn extend<I: IntoIterator<Item = T>>(&mut self, iter: I)
fn extend<I: IntoIterator<Item = T>>(&mut self, iter: I)
sourcefn extend_one(&mut self, item: A)
fn extend_one(&mut self, item: A)
extend_one)sourcefn extend_reserve(&mut self, additional: usize)
fn extend_reserve(&mut self, additional: usize)
extend_one)sourceimpl<'a, T> From<&'a NonEmptySlice<T>> for NonEmptyVec<T>where
T: Clone,
impl<'a, T> From<&'a NonEmptySlice<T>> for NonEmptyVec<T>where
T: Clone,
sourcefn from(slice: &'a NonEmptySlice<T>) -> Self
fn from(slice: &'a NonEmptySlice<T>) -> Self
sourceimpl<'a, T> From<&'a NonEmptyVec<T>> for Cow<'a, [T]>where
T: Clone,
impl<'a, T> From<&'a NonEmptyVec<T>> for Cow<'a, [T]>where
T: Clone,
sourcefn from(v: &'a NonEmptyVec<T>) -> Self
fn from(v: &'a NonEmptyVec<T>) -> Self
sourceimpl<'a, T> From<&'a NonEmptyVec<T>> for Cow<'a, NonEmptySlice<T>>where
T: Clone,
impl<'a, T> From<&'a NonEmptyVec<T>> for Cow<'a, NonEmptySlice<T>>where
T: Clone,
sourcefn from(v: &'a NonEmptyVec<T>) -> Self
fn from(v: &'a NonEmptyVec<T>) -> Self
sourceimpl<'a, T> From<&'a mut NonEmptySlice<T>> for NonEmptyVec<T>where
T: Clone,
impl<'a, T> From<&'a mut NonEmptySlice<T>> for NonEmptyVec<T>where
T: Clone,
sourcefn from(slice: &'a mut NonEmptySlice<T>) -> Self
fn from(slice: &'a mut NonEmptySlice<T>) -> Self
sourceimpl From<NonEmptyVec<NonZeroU8>> for CString
Available on crate feature std only.
impl From<NonEmptyVec<NonZeroU8>> for CString
std only.sourcefn from(value: NonEmptyVec<NonZeroU8>) -> Self
fn from(value: NonEmptyVec<NonZeroU8>) -> Self
sourceimpl<T> From<NonEmptyVec<T>> for Arc<[T]>
impl<T> From<NonEmptyVec<T>> for Arc<[T]>
sourcefn from(value: NonEmptyVec<T>) -> Self
fn from(value: NonEmptyVec<T>) -> Self
sourceimpl<T> From<NonEmptyVec<T>> for Arc<NonEmptySlice<T>>
impl<T> From<NonEmptyVec<T>> for Arc<NonEmptySlice<T>>
sourcefn from(value: NonEmptyVec<T>) -> Self
fn from(value: NonEmptyVec<T>) -> Self
sourceimpl<T> From<NonEmptyVec<T>> for BinaryHeap<T>where
T: Ord,
impl<T> From<NonEmptyVec<T>> for BinaryHeap<T>where
T: Ord,
sourcefn from(value: NonEmptyVec<T>) -> Self
fn from(value: NonEmptyVec<T>) -> Self
sourceimpl<T> From<NonEmptyVec<T>> for Box<[T]>
impl<T> From<NonEmptyVec<T>> for Box<[T]>
sourcefn from(value: NonEmptyVec<T>) -> Self
fn from(value: NonEmptyVec<T>) -> Self
sourceimpl<T> From<NonEmptyVec<T>> for Box<NonEmptySlice<T>>
impl<T> From<NonEmptyVec<T>> for Box<NonEmptySlice<T>>
sourcefn from(value: NonEmptyVec<T>) -> Self
fn from(value: NonEmptyVec<T>) -> Self
sourceimpl<T> From<NonEmptyVec<T>> for Rc<[T]>
impl<T> From<NonEmptyVec<T>> for Rc<[T]>
sourcefn from(value: NonEmptyVec<T>) -> Self
fn from(value: NonEmptyVec<T>) -> Self
sourceimpl<T> From<NonEmptyVec<T>> for Rc<NonEmptySlice<T>>
impl<T> From<NonEmptyVec<T>> for Rc<NonEmptySlice<T>>
sourcefn from(value: NonEmptyVec<T>) -> Self
fn from(value: NonEmptyVec<T>) -> Self
sourceimpl<T> From<NonEmptyVec<T>> for Vec<T>
impl<T> From<NonEmptyVec<T>> for Vec<T>
sourcefn from(value: NonEmptyVec<T>) -> Self
fn from(value: NonEmptyVec<T>) -> Self
sourceimpl<T> From<NonEmptyVec<T>> for VecDeque<T>
impl<T> From<NonEmptyVec<T>> for VecDeque<T>
sourcefn from(value: NonEmptyVec<T>) -> Self
fn from(value: NonEmptyVec<T>) -> Self
sourceimpl<T> Hash for NonEmptyVec<T>where
T: Hash,
impl<T> Hash for NonEmptyVec<T>where
T: Hash,
sourceimpl<T, I> Index<I> for NonEmptyVec<T>where
I: SliceIndex<[T]>,
impl<T, I> Index<I> for NonEmptyVec<T>where
I: SliceIndex<[T]>,
sourceimpl<T, I> IndexMut<I> for NonEmptyVec<T>where
I: SliceIndex<[T]>,
impl<T, I> IndexMut<I> for NonEmptyVec<T>where
I: SliceIndex<[T]>,
sourceimpl<'a, T> IntoIterator for &'a NonEmptyVec<T>
impl<'a, T> IntoIterator for &'a NonEmptyVec<T>
sourceimpl<'a, T> IntoIterator for &'a mut NonEmptyVec<T>
impl<'a, T> IntoIterator for &'a mut NonEmptyVec<T>
sourceimpl<T> IntoIterator for NonEmptyVec<T>
impl<T> IntoIterator for NonEmptyVec<T>
sourceimpl<T> Ord for NonEmptyVec<T>where
T: Ord,
impl<T> Ord for NonEmptyVec<T>where
T: Ord,
1.21.0 · sourcefn max(self, other: Self) -> Self
fn max(self, other: Self) -> Self
1.21.0 · sourcefn min(self, other: Self) -> Self
fn min(self, other: Self) -> Self
1.50.0 · sourcefn clamp(self, min: Self, max: Self) -> Selfwhere
Self: PartialOrd<Self>,
fn clamp(self, min: Self, max: Self) -> Selfwhere
Self: PartialOrd<Self>,
sourceimpl<T, U, const N: usize> PartialEq<[U; N]> for NonEmptyVec<T>where
T: PartialEq<U>,
impl<T, U, const N: usize> PartialEq<[U; N]> for NonEmptyVec<T>where
T: PartialEq<U>,
sourceimpl<T, U> PartialEq<[U]> for NonEmptyVec<T>where
T: PartialEq<U>,
impl<T, U> PartialEq<[U]> for NonEmptyVec<T>where
T: PartialEq<U>,
sourceimpl<T, U> PartialEq<NonEmptySlice<U>> for NonEmptyVec<T>where
T: PartialEq<U>,
impl<T, U> PartialEq<NonEmptySlice<U>> for NonEmptyVec<T>where
T: PartialEq<U>,
sourcefn eq(&self, other: &NonEmptySlice<U>) -> bool
fn eq(&self, other: &NonEmptySlice<U>) -> bool
sourceimpl<T, U, const N: usize> PartialEq<NonEmptyVec<U>> for [T; N]where
T: PartialEq<U>,
impl<T, U, const N: usize> PartialEq<NonEmptyVec<U>> for [T; N]where
T: PartialEq<U>,
sourcefn eq(&self, other: &NonEmptyVec<U>) -> bool
fn eq(&self, other: &NonEmptyVec<U>) -> bool
sourceimpl<T, U> PartialEq<NonEmptyVec<U>> for [T]where
T: PartialEq<U>,
impl<T, U> PartialEq<NonEmptyVec<U>> for [T]where
T: PartialEq<U>,
sourcefn eq(&self, other: &NonEmptyVec<U>) -> bool
fn eq(&self, other: &NonEmptyVec<U>) -> bool
sourceimpl<T, U> PartialEq<NonEmptyVec<U>> for NonEmptySlice<T>where
T: PartialEq<U>,
impl<T, U> PartialEq<NonEmptyVec<U>> for NonEmptySlice<T>where
T: PartialEq<U>,
sourcefn eq(&self, other: &NonEmptyVec<U>) -> bool
fn eq(&self, other: &NonEmptyVec<U>) -> bool
sourceimpl<T, U> PartialEq<NonEmptyVec<U>> for NonEmptyVec<T>where
T: PartialEq<U>,
impl<T, U> PartialEq<NonEmptyVec<U>> for NonEmptyVec<T>where
T: PartialEq<U>,
sourcefn eq(&self, other: &NonEmptyVec<U>) -> bool
fn eq(&self, other: &NonEmptyVec<U>) -> bool
sourceimpl<T, U> PartialEq<NonEmptyVec<U>> for Vec<T>where
T: PartialEq<U>,
impl<T, U> PartialEq<NonEmptyVec<U>> for Vec<T>where
T: PartialEq<U>,
sourcefn eq(&self, other: &NonEmptyVec<U>) -> bool
fn eq(&self, other: &NonEmptyVec<U>) -> bool
sourceimpl<T, U> PartialEq<NonEmptyVec<U>> for VecDeque<T>where
T: PartialEq<U>,
impl<T, U> PartialEq<NonEmptyVec<U>> for VecDeque<T>where
T: PartialEq<U>,
sourcefn eq(&self, other: &NonEmptyVec<U>) -> bool
fn eq(&self, other: &NonEmptyVec<U>) -> bool
sourceimpl<T, U> PartialEq<Vec<U, Global>> for NonEmptyVec<T>where
T: PartialEq<U>,
impl<T, U> PartialEq<Vec<U, Global>> for NonEmptyVec<T>where
T: PartialEq<U>,
sourceimpl<T, U> PartialEq<VecDeque<U, Global>> for NonEmptyVec<T>where
T: PartialEq<U>,
impl<T, U> PartialEq<VecDeque<U, Global>> for NonEmptyVec<T>where
T: PartialEq<U>,
Collection equivalence
sourceimpl<T> PartialOrd<NonEmptyVec<T>> for NonEmptyVec<T>where
T: PartialOrd,
impl<T> PartialOrd<NonEmptyVec<T>> for NonEmptyVec<T>where
T: PartialOrd,
sourcefn partial_cmp(&self, other: &Self) -> Option<Ordering>
fn partial_cmp(&self, other: &Self) -> Option<Ordering>
1.0.0 · sourcefn le(&self, other: &Rhs) -> bool
fn le(&self, other: &Rhs) -> bool
self and other) and is used by the <=
operator. Read moresourceimpl<T> Serialize for NonEmptyVec<T>where
T: Serialize,
Available on crate feature serde only.
impl<T> Serialize for NonEmptyVec<T>where
T: Serialize,
serde only.sourceimpl<T> TryFrom<&[T]> for NonEmptyVec<T>where
T: Clone,
impl<T> TryFrom<&[T]> for NonEmptyVec<T>where
T: Clone,
sourceimpl<T> TryFrom<&mut [T]> for NonEmptyVec<T>where
T: Clone,
impl<T> TryFrom<&mut [T]> for NonEmptyVec<T>where
T: Clone,
sourceimpl TryFrom<&str> for NonEmptyVec<u8>
impl TryFrom<&str> for NonEmptyVec<u8>
sourceimpl<T> TryFrom<BinaryHeap<T>> for NonEmptyVec<T>
impl<T> TryFrom<BinaryHeap<T>> for NonEmptyVec<T>
type Error = EmptyError
type Error = EmptyError
sourcefn try_from(value: BinaryHeap<T>) -> Result<Self, Self::Error>
fn try_from(value: BinaryHeap<T>) -> Result<Self, Self::Error>
sourceimpl TryFrom<CString> for NonEmptyVec<u8>
Available on crate feature std only.
impl TryFrom<CString> for NonEmptyVec<u8>
std only.sourceimpl<T, const N: usize> TryFrom<NonEmptyVec<T>> for [T; N]
impl<T, const N: usize> TryFrom<NonEmptyVec<T>> for [T; N]
Failable conversions: non-empty vector -> X
type Error = NonEmptyVec<T>
type Error = NonEmptyVec<T>
sourcefn try_from(value: NonEmptyVec<T>) -> Result<Self, Self::Error>
fn try_from(value: NonEmptyVec<T>) -> Result<Self, Self::Error>
sourceimpl TryFrom<String> for NonEmptyVec<u8>
impl TryFrom<String> for NonEmptyVec<u8>
sourceimpl<T> TryFrom<Vec<T, Global>> for NonEmptyVec<T>
impl<T> TryFrom<Vec<T, Global>> for NonEmptyVec<T>
sourceimpl<T> TryFrom<VecDeque<T, Global>> for NonEmptyVec<T>
impl<T> TryFrom<VecDeque<T, Global>> for NonEmptyVec<T>
sourceimpl Write for NonEmptyVec<u8>
Available on crate feature std only.
impl Write for NonEmptyVec<u8>
std only.sourcefn write(&mut self, buf: &[u8]) -> Result<usize>
fn write(&mut self, buf: &[u8]) -> Result<usize>
sourcefn write_vectored(&mut self, bufs: &[IoSlice<'_>]) -> Result<usize>
fn write_vectored(&mut self, bufs: &[IoSlice<'_>]) -> Result<usize>
sourcefn write_all(&mut self, buf: &[u8]) -> Result<()>
fn write_all(&mut self, buf: &[u8]) -> Result<()>
sourcefn flush(&mut self) -> Result<()>
fn flush(&mut self) -> Result<()>
sourcefn is_write_vectored(&self) -> bool
fn is_write_vectored(&self) -> bool
can_vector)sourcefn write_all_vectored(&mut self, bufs: &mut [IoSlice<'_>]) -> Result<(), Error>
fn write_all_vectored(&mut self, bufs: &mut [IoSlice<'_>]) -> Result<(), Error>
write_all_vectored)