Crate nom

source ·
Expand description

nom, eating data byte by byte

nom is a parser combinator library with a focus on safe parsing, streaming patterns, and as much as possible zero copy.

Example

extern crate nom;

use nom::{
  IResult,
  bytes::complete::{tag, take_while_m_n},
  combinator::map_res,
  sequence::tuple};

#[derive(Debug,PartialEq)]
pub struct Color {
  pub red:     u8,
  pub green:   u8,
  pub blue:    u8,
}

fn from_hex(input: &str) -> Result<u8, std::num::ParseIntError> {
  u8::from_str_radix(input, 16)
}

fn is_hex_digit(c: char) -> bool {
  c.is_digit(16)
}

fn hex_primary(input: &str) -> IResult<&str, u8> {
  map_res(
    take_while_m_n(2, 2, is_hex_digit),
    from_hex
  )(input)
}

fn hex_color(input: &str) -> IResult<&str, Color> {
  let (input, _) = tag("#")(input)?;
  let (input, (red, green, blue)) = tuple((hex_primary, hex_primary, hex_primary))(input)?;

  Ok((input, Color { red, green, blue }))
}

fn main() {
  assert_eq!(hex_color("#2F14DF"), Ok(("", Color {
    red: 47,
    green: 20,
    blue: 223,
  })));
}

The code is available on Github

There are a few guides with more details about the design of nom macros, how to write parsers, or the error management system. You can also check out the recipes module that contains examples of common patterns.

Looking for a specific combinator? Read the “choose a combinator” guide

If you are upgrading to nom 5.0, please read the migration document.

See also the FAQ.

Parser combinators

Parser combinators are an approach to parsers that is very different from software like lex and yacc. Instead of writing the grammar in a separate syntax and generating the corresponding code, you use very small functions with very specific purposes, like “take 5 bytes”, or “recognize the word ‘HTTP’”, and assemble them in meaningful patterns like “recognize ‘HTTP’, then a space, then a version”. The resulting code is small, and looks like the grammar you would have written with other parser approaches.

This gives us a few advantages:

  • The parsers are small and easy to write
  • The parsers components are easy to reuse (if they’re general enough, please add them to nom!)
  • The parsers components are easy to test separately (unit tests and property-based tests)
  • The parser combination code looks close to the grammar you would have written
  • You can build partial parsers, specific to the data you need at the moment, and ignore the rest

Here is an example of one such parser, to recognize text between parentheses:

use nom::{
  IResult,
  sequence::delimited,
  // see the "streaming/complete" paragraph lower for an explanation of these submodules
  character::complete::char,
  bytes::complete::is_not
};

fn parens(input: &str) -> IResult<&str, &str> {
  delimited(char('('), is_not(")"), char(')'))(input)
}

It defines a function named parens which will recognize a sequence of the character (, the longest byte array not containing ), then the character ), and will return the byte array in the middle.

Here is another parser, written without using nom’s combinators this time:

#[macro_use]
extern crate nom;

use nom::{IResult, Err, Needed};

fn take4(i: &[u8]) -> IResult<&[u8], &[u8]>{
  if i.len() < 4 {
    Err(Err::Incomplete(Needed::new(4)))
  } else {
    Ok((&i[4..], &i[0..4]))
  }
}

This function takes a byte array as input, and tries to consume 4 bytes. Writing all the parsers manually, like this, is dangerous, despite Rust’s safety features. There are still a lot of mistakes one can make. That’s why nom provides a list of function and macros to help in developing parsers.

With functions, you would write it like this:

use nom::{IResult, bytes::streaming::take};
fn take4(input: &str) -> IResult<&str, &str> {
  take(4u8)(input)
}

With macros, you would write it like this:

#[macro_use]
extern crate nom;

named!(take4, take!(4));

nom has used macros for combinators from versions 1 to 4, and from version 5, it proposes new combinators as functions, but still allows the macros style (macros have been rewritten to use the functions under the hood). For new parsers, we recommend using the functions instead of macros, since rustc messages will be much easier to understand.

A parser in nom is a function which, for an input type I, an output type O and an optional error type E, will have the following signature:

fn parser(input: I) -> IResult<I, O, E>;

Or like this, if you don’t want to specify a custom error type (it will be (I, ErrorKind) by default):

fn parser(input: I) -> IResult<I, O>;

IResult is an alias for the Result type:

use nom::{Needed, error::Error};

type IResult<I, O, E = Error<I>> = Result<(I, O), Err<E>>;

enum Err<E> {
  Incomplete(Needed),
  Error(E),
  Failure(E),
}

It can have the following values:

  • A correct result Ok((I,O)) with the first element being the remaining of the input (not parsed yet), and the second the output value;
  • An error Err(Err::Error(c)) with c an error that can be built from the input position and a parser specific error
  • An error Err(Err::Incomplete(Needed)) indicating that more input is necessary. Needed can indicate how much data is needed
  • An error Err(Err::Failure(c)). It works like the Error case, except it indicates an unrecoverable error: We cannot backtrack and test another parser

Please refer to the “choose a combinator” guide for an exhaustive list of parsers. See also the rest of the documentation here.

Making new parsers with function combinators

nom is based on functions that generate parsers, with a signature like this: (arguments) -> impl Fn(Input) -> IResult<Input, Output, Error>. The arguments of a combinator can be direct values (like take which uses a number of bytes or character as argument) or even other parsers (like delimited which takes as argument 3 parsers, and returns the result of the second one if all are successful).

Here are some examples:

use nom::IResult;
use nom::bytes::complete::{tag, take};
fn abcd_parser(i: &str) -> IResult<&str, &str> {
  tag("abcd")(i) // will consume bytes if the input begins with "abcd"
}

fn take_10(i: &[u8]) -> IResult<&[u8], &[u8]> {
  take(10u8)(i) // will consume and return 10 bytes of input
}

Combining parsers

There are higher level patterns, like the alt combinator, which provides a choice between multiple parsers. If one branch fails, it tries the next, and returns the result of the first parser that succeeds:

use nom::IResult;
use nom::branch::alt;
use nom::bytes::complete::tag;

let mut alt_tags = alt((tag("abcd"), tag("efgh")));

assert_eq!(alt_tags(&b"abcdxxx"[..]), Ok((&b"xxx"[..], &b"abcd"[..])));
assert_eq!(alt_tags(&b"efghxxx"[..]), Ok((&b"xxx"[..], &b"efgh"[..])));
assert_eq!(alt_tags(&b"ijklxxx"[..]), Err(nom::Err::Error((&b"ijklxxx"[..], nom::error::ErrorKind::Tag))));

The opt combinator makes a parser optional. If the child parser returns an error, opt will still succeed and return None:

use nom::{IResult, combinator::opt, bytes::complete::tag};
fn abcd_opt(i: &[u8]) -> IResult<&[u8], Option<&[u8]>> {
  opt(tag("abcd"))(i)
}

assert_eq!(abcd_opt(&b"abcdxxx"[..]), Ok((&b"xxx"[..], Some(&b"abcd"[..]))));
assert_eq!(abcd_opt(&b"efghxxx"[..]), Ok((&b"efghxxx"[..], None)));

many0 applies a parser 0 or more times, and returns a vector of the aggregated results:

use nom::{IResult, multi::many0, bytes::complete::tag};
use std::str;

fn multi(i: &str) -> IResult<&str, Vec<&str>> {
  many0(tag("abcd"))(i)
}

let a = "abcdef";
let b = "abcdabcdef";
let c = "azerty";
assert_eq!(multi(a), Ok(("ef",     vec!["abcd"])));
assert_eq!(multi(b), Ok(("ef",     vec!["abcd", "abcd"])));
assert_eq!(multi(c), Ok(("azerty", Vec::new())));

Here are some basic combining macros available:

  • opt: Will make the parser optional (if it returns the O type, the new parser returns Option<O>)
  • many0: Will apply the parser 0 or more times (if it returns the O type, the new parser returns Vec<O>)
  • many1: Will apply the parser 1 or more times

There are more complex (and more useful) parsers like tuple!, which is used to apply a series of parsers then assemble their results.

Example with tuple:

use nom::{error::ErrorKind, Needed,
number::streaming::be_u16,
bytes::streaming::{tag, take},
sequence::tuple};

let mut tpl = tuple((be_u16, take(3u8), tag("fg")));

assert_eq!(
  tpl(&b"abcdefgh"[..]),
  Ok((
    &b"h"[..],
    (0x6162u16, &b"cde"[..], &b"fg"[..])
  ))
);
assert_eq!(tpl(&b"abcde"[..]), Err(nom::Err::Incomplete(Needed::new(2))));
let input = &b"abcdejk"[..];
assert_eq!(tpl(input), Err(nom::Err::Error((&input[5..], ErrorKind::Tag))));

But you can also use a sequence of combinators written in imperative style, thanks to the ? operator:

use nom::{IResult, bytes::complete::tag};

#[derive(Debug, PartialEq)]
struct A {
  a: u8,
  b: u8
}

fn ret_int1(i:&[u8]) -> IResult<&[u8], u8> { Ok((i,1)) }
fn ret_int2(i:&[u8]) -> IResult<&[u8], u8> { Ok((i,2)) }

fn f(i: &[u8]) -> IResult<&[u8], A> {
  // if successful, the parser returns `Ok((remaining_input, output_value))` that we can destructure
  let (i, _) = tag("abcd")(i)?;
  let (i, a) = ret_int1(i)?;
  let (i, _) = tag("efgh")(i)?;
  let (i, b) = ret_int2(i)?;

  Ok((i, A { a, b }))
}

let r = f(b"abcdefghX");
assert_eq!(r, Ok((&b"X"[..], A{a: 1, b: 2})));

Streaming / Complete

Some of nom’s modules have streaming or complete submodules. They hold different variants of the same combinators.

A streaming parser assumes that we might not have all of the input data. This can happen with some network protocol or large file parsers, where the input buffer can be full and need to be resized or refilled.

A complete parser assumes that we already have all of the input data. This will be the common case with small files that can be read entirely to memory.

Here is how it works in practice:

use nom::{IResult, Err, Needed, error::{Error, ErrorKind}, bytes, character};

fn take_streaming(i: &[u8]) -> IResult<&[u8], &[u8]> {
  bytes::streaming::take(4u8)(i)
}

fn take_complete(i: &[u8]) -> IResult<&[u8], &[u8]> {
  bytes::complete::take(4u8)(i)
}

// both parsers will take 4 bytes as expected
assert_eq!(take_streaming(&b"abcde"[..]), Ok((&b"e"[..], &b"abcd"[..])));
assert_eq!(take_complete(&b"abcde"[..]), Ok((&b"e"[..], &b"abcd"[..])));

// if the input is smaller than 4 bytes, the streaming parser
// will return `Incomplete` to indicate that we need more data
assert_eq!(take_streaming(&b"abc"[..]), Err(Err::Incomplete(Needed::new(1))));

// but the complete parser will return an error
assert_eq!(take_complete(&b"abc"[..]), Err(Err::Error(Error::new(&b"abc"[..], ErrorKind::Eof))));

// the alpha0 function recognizes 0 or more alphabetic characters
fn alpha0_streaming(i: &str) -> IResult<&str, &str> {
  character::streaming::alpha0(i)
}

fn alpha0_complete(i: &str) -> IResult<&str, &str> {
  character::complete::alpha0(i)
}

// if there's a clear limit to the recognized characters, both parsers work the same way
assert_eq!(alpha0_streaming("abcd;"), Ok((";", "abcd")));
assert_eq!(alpha0_complete("abcd;"), Ok((";", "abcd")));

// but when there's no limit, the streaming version returns `Incomplete`, because it cannot
// know if more input data should be recognized. The whole input could be "abcd;", or
// "abcde;"
assert_eq!(alpha0_streaming("abcd"), Err(Err::Incomplete(Needed::new(1))));

// while the complete version knows that all of the data is there
assert_eq!(alpha0_complete("abcd"), Ok(("", "abcd")));

Going further: Read the guides, check out the recipes!

Re-exports

Modules

  • Bit level parsers
  • Choice combinators
  • Parsers recognizing bytes streams
  • Character specific parsers and combinators
  • General purpose combinators
  • Error management
  • Lib module to re-export everything needed from std or core/alloc. This is how serde does it, albeit there it is not public.
  • Combinators applying their child parser multiple times
  • Parsers recognizing numbers
  • Nom Recipes
  • regexpregexp
    Parser combinators that use regular expressions.
  • Combinators applying parsers in sequence

Macros

  • Add an error if the child parser fails.
  • Try a list of parsers and return the result of the first successful one
  • Transforms its byte slice input into a bit stream for the underlying parser. This allows the given bit stream parser to work on a byte slice input.
  • Counterpart to bits, bytes! transforms its bit stream input into a byte slice for the underlying parser, allowing byte-slice parsers to work on bit streams.
  • Used to wrap common expressions and function as macros.
  • Matches one character: char!(char) => &[u8] -> IResult<&[u8], char>.
  • Replaces a Incomplete returned by the child parser with an Error.
  • cond!(bool, I -> IResult<I,O>) => I -> IResult<I, Option<O>> Conditional combinator
  • countalloc
    count!(I -> IResult<I,O>, nb) => I -> IResult<I, Vec<O>> Applies the child parser a specified number of times.
  • Prints a message if the parser fails.
  • Prints a message and the input if the parser fails.
  • delimited!(I -> IResult<I,T>, I -> IResult<I,O>, I -> IResult<I,U>) => I -> IResult<I, O> delimited(opening, X, closing) returns X.
  • do_parse!(I->IResult<I,A> >> I->IResult<I,B> >> ... I->IResult<I,X> , ( O ) ) => I -> IResult<I, O> do_parse applies sub parsers in a sequence. It can store intermediary results and make them available for later parsers.
  • eof!() returns its input if it is at the end of input data.
  • Creates a parse error from a nom::ErrorKind, the position in the input and the next error in the parsing tree
  • Creates a parse error from a nom::ErrorKind and the position in the input
  • escaped!(T -> IResult<T, T>, U, T -> IResult<T, T>) => T -> IResult<T, T> where T: InputIter, U: AsChar matches a byte string with escaped characters.
  • escaped_transform!(&[T] -> IResult<&[T], &[T]>, T, &[T] -> IResult<&[T], &[T]>) => &[T] -> IResult<&[T], Vec<T>> matches a byte string with escaped characters.
  • exact!() will fail if the child parser does not consume the whole data.
  • translate parser result from IResult<I,O,u32> to IResult<I,O,E> with a custom type
  • flat_map!(R -> IResult<R,S>, S -> IResult<S,T>) => R -> IResult<R, T>
  • fold_many0!(I -> IResult<I,O>, R, Fn(R, O) -> R) => I -> IResult<I, R> Applies the parser 0 or more times and folds the list of return values.
  • fold_many1!(I -> IResult<I,O>, R, Fn(R, O) -> R) => I -> IResult<I, R> Applies the parser 1 or more times and folds the list of return values.
  • fold_many_m_n!(usize, usize, I -> IResult<I,O>, R, Fn(R, O) -> R) => I -> IResult<I, R> Applies the parser between m and n times (n included) and folds the list of return value.
  • If the parameter is nom::number::Endianness::Big, parse a big endian i16 integer, otherwise a little endian i16 integer.
  • If the parameter is nom::number::Endianness::Big, parse a big endian i32 integer, otherwise a little endian i32 integer.
  • If the parameter is nom::number::Endianness::Big, parse a big endian i64 integer, otherwise a little endian i64 integer.
  • If the parameter is nom::number::Endianness::Big, parse a big endian i64 integer, otherwise a little endian i64 integer.
  • into!(I -> IResult<I, O1, E1>) => I -> IResult<I, O2, E2> automatically converts the child parser’s result to another type
  • is_a!(&[T]) => &[T] -> IResult<&[T], &[T]> returns the longest list of bytes that appear in the provided array.
  • is_not!(&[T:AsBytes]) => &[T] -> IResult<&[T], &[T]> returns the longest list of bytes that do not appear in the provided array.
  • length_count!(I -> IResult<I, nb>, I -> IResult<I,O>) => I -> IResult<I, Vec<O>> Gets a number from the first parser, then applies the second parser that many times.
  • length_data!(I -> IResult<I, nb>) => O
  • length_value!(I -> IResult<I, nb>, I -> IResult<I,O>) => I -> IResult<I, O>
  • many0alloc
    many0!(I -> IResult<I,O>) => I -> IResult<I, Vec<O>> Applies the parser 0 or more times and returns the list of results in a Vec.
  • many0_count!(I -> IResult<I,O>) => I -> IResult<I, usize> Applies the parser 0 or more times and returns the number of times the parser was applied.
  • many1alloc
    many1!(I -> IResult<I,O>) => I -> IResult<I, Vec<O>> Applies the parser 1 or more times and returns the list of results in a Vec.
  • many1_count!(I -> IResult<I,O>) => I -> IResult<I, usize> Applies the parser 1 or more times and returns the number of times the parser was applied.
  • many_m_n!(usize, usize, I -> IResult<I,O>) => I -> IResult<I, Vec<O>> Applies the parser between m and n times (n included) and returns the list of results in a Vec.
  • many_till!(I -> IResult<I,O>, I -> IResult<I,P>) => I -> IResult<I, (Vec<O>, P)> Applies the first parser until the second applies. Returns a tuple containing the list of results from the first in a Vec and the result of the second.
  • map!(I -> IResult<I, O>, O -> P) => I -> IResult<I, P>
  • map_opt!(I -> IResult<I, O>, O -> Option<P>) => I -> IResult<I, P> maps a function returning an Option on the output of a parser.
  • map_res!(I -> IResult<I, O>, O -> Result<P>) => I -> IResult<I, P> maps a function returning a Result on the output of a parser.
  • Makes a function from a parser combination
  • Makes a function from a parser combination with arguments.
  • Makes a function from a parser combination, with attributes.
  • Matches anything but the provided characters.
  • not!(I -> IResult<I,O>) => I -> IResult<I, ()> returns a result only if the embedded parser returns Error or Err(Err::Incomplete). Does not consume the input.
  • Character level parsers Matches one of the provided characters.
  • opt!(I -> IResult<I,O>) => I -> IResult<I, Option<O>> make the underlying parser optional.
  • opt_res!(I -> IResult<I,O>) => I -> IResult<I, Result<nom::Err,O>> make the underlying parser optional.
  • pair!(I -> IResult<I,O>, I -> IResult<I,P>) => I -> IResult<I, (O,P)> pair returns a tuple of the results of its two child parsers if both succeed.
  • parse_to!(O) => I -> IResult<I, O> Uses the parse method from std::str::FromStr to convert the current input to the specified type.
  • peek!(I -> IResult<I,O>) => I -> IResult<I, O> returns a result without consuming the input.
  • permutation!(I -> IResult<I,A>, I -> IResult<I,B>, ... I -> IResult<I,X> ) => I -> IResult<I, (A,B,...X)> applies its sub parsers in a sequence, but independent from their order this parser will only succeed if all of its sub parsers succeed.
  • preceded!(I -> IResult<I,T>, I -> IResult<I,O>) => I -> IResult<I, O> preceded returns the result of its second parser if both succeed.
  • re_bytes_captureregexp and alloc
    re_bytes_capture!(regexp) => &[T] -> IResult<&[T], Vec<&[T]>> Returns the capture groups of the first match.
  • re_bytes_capturesregexp and alloc
    re_bytes_captures!(regexp) => &[T] -> IResult<&[T], Vec<Vec<&[T]>>> Returns the capture groups of all matches.
  • re_bytes_find!(regexp) => &[T] -> IResult<&[T], &[T]> Returns the first match.
  • re_bytes_match!(regexp) => &[T] -> IResult<&[T], &[T]> Returns the whole input if a match is found.
  • re_bytes_matchesregexp and alloc
    re_bytes_matches!(regexp) => &[T] -> IResult<&[T], Vec<&[T]>> Returns all the matched parts.
  • re_captureregexp and alloc
    re_capture!(regexp) => &[T] -> IResult<&[T], Vec<&[T]>> Returns the capture groups of the first match.
  • re_capturesregexp and alloc
    re_captures!(regexp) => &[T] -> IResult<&[T], Vec<Vec<&[T]>>> Returns the capture groups of all matches.
  • re_findregexp
    re_find!(regexp) => &[T] -> IResult<&[T], &[T]> Returns the first match.
  • re_matchregexp
    re_match!(regexp) => &[T] -> IResult<&[T], &[T]> Returns the whole input if a match is found.
  • re_matchesregexp and alloc
    re_matches!(regexp) => &[T] -> IResult<&[T], Vec<&[T]>> Returns all the matched parts.
  • recognize!(I -> IResult<I, O> ) => I -> IResult<I, I> if the child parser was successful, return the consumed input as produced value.
  • Prevents backtracking if the child parser fails.
  • separated_list0!(I -> IResult<I,T>, I -> IResult<I,O>) => I -> IResult<I, Vec<O>> separated_list0(sep, X) returns a Vec<X>.
  • separated_list1!(I -> IResult<I,T>, I -> IResult<I,O>) => I -> IResult<I, Vec<O>> separated_list1(sep, X) returns a Vec<X>.
  • separated_pair!(I -> IResult<I,O>, I -> IResult<I, T>, I -> IResult<I,P>) => I -> IResult<I, (O,P)> separated_pair(X,sep,Y) returns a tuple of its first and third child parsers if all 3 succeed.
  • switch!(I -> IResult<I,P>, P => I -> IResult<I,O> | ... | P => I -> IResult<I,O> ) => I -> IResult<I, O> choose the next parser depending on the result of the first one, if successful, and returns the result of the second parser
  • tag!(&[T]: nom::AsBytes) => &[T] -> IResult<&[T], &[T]> declares a byte array as a suite to recognize.
  • Matches the given bit pattern.
  • tag_no_case!(&[T]) => &[T] -> IResult<&[T], &[T]> declares a case insensitive ascii string as a suite to recognize.
  • take!(nb) => &[T] -> IResult<&[T], &[T]> generates a parser consuming the specified number of bytes.
  • Consumes the specified number of bits and returns them as the specified type.
  • take_str!(nb) => &[T] -> IResult<&[T], &str> same as take! but returning a &str.
  • take_till!(T -> bool) => &[T] -> IResult<&[T], &[T]> returns the longest list of bytes until the provided function succeeds.
  • take_till1!(T -> bool) => &[T] -> IResult<&[T], &[T]> returns the longest non empty list of bytes until the provided function succeeds.
  • take_until!(tag) => &[T] -> IResult<&[T], &[T]> consumes data until it finds the specified tag.
  • take_until1!(tag) => &[T] -> IResult<&[T], &[T]> consumes data (at least one byte) until it finds the specified tag.
  • take_while!(T -> bool) => &[T] -> IResult<&[T], &[T]> returns the longest list of bytes until the provided function fails.
  • take_while1!(T -> bool) => &[T] -> IResult<&[T], &[T]> returns the longest (non empty) list of bytes until the provided function fails.
  • take_while_m_n!(m: usize, n: usize, T -> bool) => &[T] -> IResult<&[T], &[T]> returns a list of bytes or characters for which the provided function returns true. The returned list’s size will be at least m, and at most n.
  • tap!(name: I -> IResult<I,O> => { block }) => I -> IResult<I, O> allows access to the parser’s result without affecting it.
  • terminated!(I -> IResult<I,O>, I -> IResult<I,T>) => I -> IResult<I, O> terminated returns the result of its first parser if both succeed.
  • A bit like std::try!, this macro will return the remaining input and parsed value if the child parser returned Ok, and will do an early return for the Err side.
  • tuple!(I->IResult<I,A>, I->IResult<I,B>, ... I->IResult<I,X>) => I -> IResult<I, (A, B, ..., X)> chains parsers and assemble the sub results in a tuple.
  • If the parameter is nom::number::Endianness::Big, parse a big endian u16 integer, otherwise a little endian u16 integer.
  • If the parameter is nom::number::Endianness::Big, parse a big endian u32 integer, otherwise a little endian u32 integer.
  • If the parameter is nom::number::Endianness::Big, parse a big endian u64 integer, otherwise a little endian u64 integer.
  • If the parameter is nom::number::Endianness::Big, parse a big endian u128 integer, otherwise a little endian u128 integer.
  • value!(T, R -> IResult<R, S> ) => R -> IResult<R, T>
  • verify!(I -> IResult<I, O>, O -> bool) => I -> IResult<I, O> returns the result of the child parser if it satisfies a verification function.

Structs

  • Implementation of Parser::and
  • Implementation of Parser::and_then
  • Implementation of Parser::flat_map
  • Implementation of Parser::into
  • Implementation of Parser::map
  • Implementation of Parser::or

Enums

  • Indicates wether a comparison was successful, an error, or if more data was needed
  • The Err enum indicates the parser was not successful
  • Contains information on needed data if a parser returned Incomplete

Traits

  • Helper trait for types that can be viewed as a byte slice
  • Transforms common types to a char for basic token parsing
  • Abstracts comparison operations
  • Equivalent From implementation to avoid orphan rules in bits parsers
  • Abstracts something which can extend an Extend. Used to build modified input slices in escaped_transform
  • Look for a substring in self
  • Look for a token in self
  • Helper trait to convert a parser’s result to a more manageable type
  • Helper trait to show a byte slice as a hex dump
  • Abstracts common iteration operations on the input type
  • Abstract method to calculate the input length
  • Abstracts slicing operations
  • Methods to take as much input as possible until the provided function returns true for the current element.
  • Useful functions to calculate the offset between slices and show a hexdump of a slice
  • Used to integrate str’s parse() method
  • All nom parsers implement this trait
  • Slicing operations using ranges.
  • Helper trait to convert numbers to usize.
  • Dummy trait used for default implementations (currently only used for InputTakeAtPosition and Compare).

Functions

  • Prints a message and the input if the parser fails.

Type Definitions

  • Holds the result of parsing functions