Crate nom [] [src]

nom, eating data byte by byte

nom is a parser combinator library with a focus on safe parsing, streaming patterns, and as much as possible zero copy.

Example

#[macro_use]
extern crate nom;

#[derive(Debug,PartialEq)]
pub struct Color {
  pub red:     u8,
  pub green:   u8,
  pub blue:    u8,
}

fn from_hex(input: &str) -> Result<u8, std::num::ParseIntError> {
  u8::from_str_radix(input, 16)
}

fn is_hex_digit(c: char) -> bool {
  let c = c as u8;
  (c >= 0x30 && c <= 0x39) || (c >= 0x41 && c <= 0x46) || (c >= 0x61 && c <= 0x66)
}

named!(hex_primary<&str, u8>,
  map_res!(take_while_m_n!(2, 2, is_hex_digit), from_hex)
);

named!(hex_color<&str, Color>,
  do_parse!(
           tag!("#")   >>
    red:   hex_primary >>
    green: hex_primary >>
    blue:  hex_primary >>
    (Color { red, green, blue })
  )
);

fn main() {
  assert_eq!(hex_color("#2F14DF"), Ok(("", Color {
    red: 47,
    green: 20,
    blue: 223,
  })));
}

The code is available on Github

There are a few guides with more details about the design of nom, how to write parsers, or the error management system.

Looking for a specific combinator? Read the "choose a combinator" guide

If you are upgrading to nom 2.0, please read the migration document.

If you are upgrading to nom 4.0, please read the migration document.

See also the FAQ.

Parser combinators

Parser combinators are an approach to parsers that is very different from software like lex and yacc. Instead of writing the grammar in a separate file and generating the corresponding code, you use very small functions with very specific purpose, like "take 5 bytes", or "recognize the word 'HTTP'", and assemble then in meaningful patterns like "recognize 'HTTP', then a space, then a version". The resulting code is small, and looks like the grammar you would have written with other parser approaches.

This has a few advantages:

  • the parsers are small and easy to write
  • the parsers components are easy to reuse (if they're general enough, please add them to nom!)
  • the parsers components are easy to test separately (unit tests and property-based tests)
  • the parser combination code looks close to the grammar you would have written
  • you can build partial parsers, specific to the data you need at the moment, and ignore the rest

Here is an example of one such parser, to recognize text between parentheses:

#[macro_use]
extern crate nom;

named!(parens, delimited!(char!('('), is_not!(")"), char!(')')));

It defines a function named parens, which will recognize a sequence of the character (, the longest byte array not containing ), then the character ), and will return the byte array in the middle.

Here is another parser, written without using nom's macros this time:

#[macro_use]
extern crate nom;

use nom::{IResult,Err,Needed};

fn take4(i:&[u8]) -> IResult<&[u8], &[u8]>{
  if i.len() < 4 {
    Err(Err::Incomplete(Needed::Size(4)))
  } else {
    Ok((&i[4..],&i[0..4]))
  }
}

This function takes a byte array as input, and tries to consume 4 bytes. Writing all the parsers manually, like this, is dangerous, despite Rust's safety features. There are still a lot of mistakes one can make. That's why nom provides a list of macros to help in developing parsers.

With macros, you would write it like this:

#[macro_use]
extern crate nom;

named!(take4, take!(4));

A parser in nom is a function which, for an input type I, an output type O and an optional error type E, will have the following signature:

Be careful when using this code, it's not being tested!
fn parser(input: I) -> IResult<I, O, E>;

Or like this, if you don't want to specify a custom error type (it will be u32 by default):

Be careful when using this code, it's not being tested!
fn parser(input: I) -> IResult<I, O>;

IResult is an alias for the Result type:

use nom::{Needed, Context};

type IResult<I, O, E = u32> = Result<(I, O), Err<I, E>>;

enum Err<I, E = u32> {
  Incomplete(Needed),
  Error(Context<I, E>),
  Failure(Context<I, E>),
}

It can have the following values:

  • a correct result Ok((I,O)) with the first element being the remaining of the input (not parsed yet), and the second the output value;
  • an error Err(Err::Error(c)) with c an enum that contians an error code with its position in the input, and optionally a chain of accumulated errors;
  • an error Err(Err::Incomplete(Needed)) indicating that more input is necessary. Needed can indicate how much data is needed
  • an error Err(Err::Failure(c)). It works like the Error case, except it indicates an unrecoverable error: we cannot backtrack and test another parser

Please refer to the [documentation][doc] for an exhaustive list of parsers. See also the "choose a combinator" guide**.

Making new parsers with macros

Macros are the main way to make new parsers by combining other ones. Those macros accept other macros or function names as arguments. You then need to make a function out of that combinator with named!, or a closure with closure!. Here is how you would do, with the tag! and take! combinators:

named!(abcd_parser, tag!("abcd")); // will consume bytes if the input begins with "abcd"

named!(take_10, take!(10));        // will consume and return 10 bytes of input

The named! macro can take three different syntaxes:

Be careful when using this code, it's not being tested!
named!(my_function( &[u8] ) -> &[u8], tag!("abcd"));

named!(my_function<&[u8], &[u8]>, tag!("abcd"));

named!(my_function, tag!("abcd")); // when you know the parser takes &[u8] as input, and returns &[u8] as output

IMPORTANT NOTE: Rust's macros can be very sensitive to the syntax, so you may encounter an error compiling parsers like this one:

named!(my_function<&[u8], Vec<&[u8]>>, many0!(tag!("abcd")));

You will get the following error: error: expected an item keyword. This happens because >> is seen as an operator, so the macro parser does not recognize what we want. There is a way to avoid it, by inserting a space:

named!(my_function<&[u8], Vec<&[u8]> >, many0!(tag!("abcd")));

This will compile correctly. I am very sorry for this inconvenience.

Combining parsers

There are more high level patterns, like the alt! combinator, which provides a choice between multiple parsers. If one branch fails, it tries the next, and returns the result of the first parser that succeeds:

named!(alt_tags, alt!(tag!("abcd") | tag!("efgh")));

assert_eq!(alt_tags(b"abcdxxx"), Ok((&b"xxx"[..], &b"abcd"[..])));
assert_eq!(alt_tags(b"efghxxx"), Ok((&b"xxx"[..], &b"efgh"[..])));
assert_eq!(alt_tags(b"ijklxxx"), Err(nom::Err::Error(error_position!(&b"ijklxxx"[..], nom::ErrorKind::Alt))));

The pipe | character is used as separator.

The opt! combinator makes a parser optional. If the child parser returns an error, opt! will succeed and return None:

named!( abcd_opt< &[u8], Option<&[u8]> >, opt!( tag!("abcd") ) );

assert_eq!(abcd_opt(b"abcdxxx"), Ok((&b"xxx"[..], Some(&b"abcd"[..]))));
assert_eq!(abcd_opt(b"efghxxx"), Ok((&b"efghxxx"[..], None)));

many0! applies a parser 0 or more times, and returns a vector of the aggregated results:

use std::str;

named!(multi< Vec<&str> >, many0!( map_res!(tag!( "abcd" ), str::from_utf8) ) );
let a = b"abcdef";
let b = b"abcdabcdef";
let c = b"azerty";
assert_eq!(multi(a), Ok((&b"ef"[..],     vec!["abcd"])));
assert_eq!(multi(b), Ok((&b"ef"[..],     vec!["abcd", "abcd"])));
assert_eq!(multi(c), Ok((&b"azerty"[..], Vec::new())));

Here are some basic combining macros available:

  • opt!: will make the parser optional (if it returns the O type, the new parser returns Option<O>)
  • many0!: will apply the parser 0 or more times (if it returns the O type, the new parser returns Vec<O>)
  • many1!: will apply the parser 1 or more times

There are more complex (and more useful) parsers like do_parse! and tuple!, which are used to apply a series of parsers then assemble their results.

Example with tuple!:

use nom::{ErrorKind, Needed,be_u16};

named!(tpl<&[u8], (u16, &[u8], &[u8]) >,
  tuple!(
    be_u16 ,
    take!(3),
    tag!("fg")
  )
);

assert_eq!(
  tpl(&b"abcdefgh"[..]),
  Ok((
    &b"h"[..],
    (0x6162u16, &b"cde"[..], &b"fg"[..])
  ))
);
assert_eq!(tpl(&b"abcde"[..]), Err(nom::Err::Incomplete(Needed::Size(2))));
let input = &b"abcdejk"[..];
assert_eq!(tpl(input), Err(nom::Err::Error(error_position!(&input[5..], ErrorKind::Tag))));

Example with do_parse!:

use nom::IResult;

#[derive(Debug, PartialEq)]
struct A {
  a: u8,
  b: u8
}

fn ret_int1(i:&[u8]) -> IResult<&[u8], u8> { Ok((i,1)) }
fn ret_int2(i:&[u8]) -> IResult<&[u8], u8> { Ok((i,2)) }

named!(f<&[u8],A>,
  do_parse!(    // the parser takes a byte array as input, and returns an A struct
    tag!("abcd")       >>      // begins with "abcd"
    opt!(tag!("abcd")) >>      // this is an optional parser
    aa: ret_int1       >>      // the return value of ret_int1, if it does not fail, will be stored in aa
    tag!("efgh")       >>
    bb: ret_int2       >>
    tag!("efgh")       >>

    (A{a: aa, b: bb})          // the final tuple will be able to use the variable defined previously
  )
);

let r = f(b"abcdabcdefghefghX");
assert_eq!(r, Ok((&b"X"[..], A{a: 1, b: 2})));

let r2 = f(b"abcdefghefghX");
assert_eq!(r2, Ok((&b"X"[..], A{a: 1, b: 2})));

The double right arrow >> is used as separator between every parser in the sequence, and the last closure can see the variables storing the result of parsers. Unless the specified return type is already a tuple, the final line should be that type wrapped in a tuple.

More examples of do_parse! and tuple! usage can be found in the INI file parser example.

Going further: read the guides!

Reexports

pub use self::simple_errors::*;
pub use self::methods::*;
pub use self::bits::*;
pub use self::whitespace::*;

Modules

bits

Bit level parsers and combinators

methods

Method macro combinators

simple_errors

Error management

types

Custom input types

whitespace

Support for whitespace delimited formats

Macros

add_return_error

Add an error if the child parser fails

alt

Try a list of parsers and return the result of the first successful one

alt_complete

Is equivalent to the alt! combinator, except that it will not return Incomplete when one of the constituting parsers returns Incomplete. Instead, it will try the next alternative in the chain.

apply

emulate function currying: apply!(my_function, arg1, arg2, ...) becomes my_function(input, arg1, arg2, ...)

apply_m

emulate function currying for method calls on structs apply_m!(self.my_function, arg1, arg2, ...) becomes self.my_function(input, arg1, arg2, ...)

bits

Transforms its byte slice input into a bit stream for the underlying parser. This allows the given bit stream parser to work on a byte slice input.

bytes

Counterpart to bits, bytes! transforms its bit stream input into a byte slice for the underlying parser, allowing byte-slice parsers to work on bit streams.

call

Used to wrap common expressions and function as macros

call_m

Used to called methods then move self back into self

char

matches one character: `char!(char) => &[u8] -> IResult<&[u8], char>

closure

Wraps a parser in a closure

complete

replaces a Incomplete returned by the child parser with an Error

cond

cond!(bool, I -> IResult<I,O>) => I -> IResult<I, Option<O>> Conditional combinator

cond_reduce

cond_reduce!(bool, I -> IResult<I,O>) => I -> IResult<I, O> Conditional combinator with error

cond_with_error

cond_with_error!(bool, I -> IResult<I,O>) => I -> IResult<I, Option<O>> Conditional combinator

count

count!(I -> IResult<I,O>, nb) => I -> IResult<I, Vec<O>> Applies the child parser a specified number of times

count_fixed

count_fixed!(O, I -> IResult<I,O>, nb) => I -> IResult<I, [O; nb]> Applies the child parser a fixed number of times and returns a fixed size array The type must be specified and it must be Copy

dbg

Prints a message if the parser fails

dbg_dmp

Prints a message and the input if the parser fails

delimited

delimited!(I -> IResult<I,T>, I -> IResult<I,O>, I -> IResult<I,U>) => I -> IResult<I, O> delimited(opening, X, closing) returns X

do_parse

do_parse!(I->IResult<I,A> >> I->IResult<I,B> >> ... I->IResult<I,X> , ( O ) ) => I -> IResult<I, O> do_parse applies sub parsers in a sequence. it can store intermediary results and make them available for later parsers

eat_separator

helper macros to build a separator parser

eof

eof!() returns its input if it is at the end of input data

error_node_position

creates a parse error from a nom::ErrorKind, the position in the input and the next error in the parsing tree. if "verbose-errors" is not activated, it default to only the error code

error_position

creates a parse error from a nom::ErrorKind and the position in the input if "verbose-errors" is not activated, it default to only the error code

escaped

escaped!(T -> IResult<T, T>, U, T -> IResult<T, T>) => T -> IResult<T, T> where T: InputIter, U: AsChar matches a byte string with escaped characters.

escaped_transform

escaped_transform!(&[T] -> IResult<&[T], &[T]>, T, &[T] -> IResult<&[T], &[T]>) => &[T] -> IResult<&[T], Vec<T>> matches a byte string with escaped characters.

exact

exact!() will fail if the child parser does not consume the whole data

expr_opt

expr_opt!(Option<O>) => I -> IResult<I, O> evaluate an expression that returns a Option and returns a IResult::Done(I,T) if Some

expr_res

expr_res!(Result<E,O>) => I -> IResult<I, O> evaluate an expression that returns a Result and returns a IResult::Done(I,T) if Ok

fix_error

translate parser result from IResult to IResult with a custom type

flat_map

flat_map!(R -> IResult<R,S>, S -> IResult<S,T>) => R -> IResult<R, T>

fold_many0

fold_many0!(I -> IResult<I,O>, R, Fn(R, O) -> R) => I -> IResult<I, R> Applies the parser 0 or more times and folds the list of return values

fold_many1

fold_many1!(I -> IResult<I,O>, R, Fn(R, O) -> R) => I -> IResult<I, R> Applies the parser 1 or more times and folds the list of return values

fold_many_m_n

fold_many_m_n!(usize, usize, I -> IResult<I,O>, R, Fn(R, O) -> R) => I -> IResult<I, R> Applies the parser between m and n times (n included) and folds the list of return value

i16

if the parameter is nom::Endianness::Big, parse a big endian i16 integer, otherwise a little endian i16 integer

i32

if the parameter is nom::Endianness::Big, parse a big endian i32 integer, otherwise a little endian i32 integer

i64

if the parameter is nom::Endianness::Big, parse a big endian i64 integer, otherwise a little endian i64 integer

is_a

is_a!(&[T]) => &[T] -> IResult<&[T], &[T]> returns the longest list of bytes that appear in the provided array

is_a_s

is_a_s!(&str) => &str -> IResult<&str, &str> returns the longest list of characters that appear in the provided array

is_not

is_not!(&[T:AsBytes]) => &[T] -> IResult<&[T], &[T]> returns the longest list of bytes that do not appear in the provided array

is_not_s

is_not_s!(&str) => &str -> IResult<&str, &str> returns the longest list of characters that do not appear in the provided array

length_bytes

length_bytes!(&[T] -> IResult<&[T], nb>) => &[T] -> IResult<&[T], &[T]> Gets a number from the first parser, then extracts that many bytes from the remaining stream

length_count

length_count!(I -> IResult<I, nb>, I -> IResult<I,O>) => I -> IResult<I, Vec<O>> gets a number from the first parser, then applies the second parser that many times

length_data

length_data!(I -> IResult<I, nb>) => O

length_value

length_value!(I -> IResult<I, nb>, I -> IResult<I,O>) => I -> IResult<I, Vec<O>> gets a number from the first parser, takes a subslice of the input of that size, then applies the second parser on that subslice. If the second parser returns Incomplete, length_value will return an error

many0

many0!(I -> IResult<I,O>) => I -> IResult<I, Vec<O>> Applies the parser 0 or more times and returns the list of results in a Vec

many1

many1!(I -> IResult<I,O>) => I -> IResult<I, Vec<O>> Applies the parser 1 or more times and returns the list of results in a Vec

many_m_n

many_m_n!(usize, usize, I -> IResult<I,O>) => I -> IResult<I, Vec<O>> Applies the parser between m and n times (n included) and returns the list of results in a Vec

many_till

many_till!(I -> IResult<I,O>, I -> IResult<I,P>) => I -> IResult<I, (Vec<O>, P)> Applies the first parser until the second applies. Returns a tuple containing the list of results from the first in a Vec and the result of the second.

map

map!(I -> IResult<I,O>, O -> P) => I -> IResult<I, P> maps a function on the result of a parser

map_opt

map_opt!(I -> IResult<I,O>, O -> Option<P>) => I -> IResult<I, P> maps a function returning an Option on the output of a parser

map_res

map_res!(I -> IResult<I,O>, O -> Result<P>) => I -> IResult<I, P> maps a function returning a Result on the output of a parser

method

Makes a method from a parser combination

named

Makes a function from a parser combination

named_args

Makes a function from a parser combination with arguments.

named_attr

Makes a function from a parser combination, with attributes

none_of

matches anything but the provided characters

not

not!(I -> IResult<I,O>) => I -> IResult<I, O> returns a result only if the embedded parser returns Error or Err(Err::Incomplete) does not consume the input

one_of

matches one of the provided characters

opt

opt!(I -> IResult<I,O>) => I -> IResult<I, Option<O>> make the underlying parser optional

opt_res

opt_res!(I -> IResult<I,O>) => I -> IResult<I, Result<nom::Err,O>> make the underlying parser optional

pair

pair!(I -> IResult<I,O>, I -> IResult<I,P>) => I -> IResult<I, (O,P)> pair(X,Y), returns (x,y)

parse_to

parse_to!(O) => I -> IResult<I, O> uses the parse method from std::str::FromStr to convert the current input to the specified type

peek

peek!(I -> IResult<I,O>) => I -> IResult<I, O> returns a result without consuming the input

permutation

permutation!(I -> IResult<I,A>, I -> IResult<I,B>, ... I -> IResult<I,X> ) => I -> IResult<I, (A,B,...X)> applies its sub parsers in a sequence, but independent from their order this parser will only succeed if all of its sub parsers succeed

preceded

preceded!(I -> IResult<I,T>, I -> IResult<I,O>) => I -> IResult<I, O> preceded(opening, X) returns X

recognize

recognize!(I -> IResult<I, O> ) => I -> IResult<I, I> if the child parser was successful, return the consumed input as produced value

return_error

Prevents backtracking if the child parser fails

sep

sep is the parser rewriting macro for whitespace separated formats

separated_list

separated_list!(I -> IResult<I,T>, I -> IResult<I,O>) => I -> IResult<I, Vec<O>> separated_list(sep, X) returns Vec will return Incomplete if there may be more elements

separated_list_complete

separated_list_complete!(I -> IResult<I,T>, I -> IResult<I,O>) => I -> IResult<I, Vec<O>> This is equivalent to the separated_list! combinator, except that it will return Error when either the separator or element subparser returns Incomplete.

separated_nonempty_list

separated_nonempty_list!(I -> IResult<I,T>, I -> IResult<I,O>) => I -> IResult<I, Vec<O>> separated_nonempty_list(sep, X) returns Vec will return Incomplete if there may be more elements

separated_nonempty_list_complete

separated_nonempty_list_complete!(I -> IResult<I,T>, I -> IResult<I,O>) => I -> IResult<I, Vec<O>> This is equivalent to the separated_nonempty_list! combinator, except that it will return Error when either the separator or element subparser returns Incomplete.

separated_pair

separated_pair!(I -> IResult<I,O>, I -> IResult<I, T>, I -> IResult<I,P>) => I -> IResult<I, (O,P)> separated_pair(X,sep,Y) returns (x,y)

switch

switch!(I -> IResult<I,P>, P => I -> IResult<I,O> | ... | P => I -> IResult<I,O> ) => I -> IResult<I, O> choose the next parser depending on the result of the first one, if successful, and returns the result of the second parser

tag

tag!(&[T]: nom::AsBytes) => &[T] -> IResult<&[T], &[T]> declares a byte array as a suite to recognize

tag_bits

Matches the given bit pattern.

tag_no_case

tag_no_case!(&[T]) => &[T] -> IResult<&[T], &[T]> declares a case insensitive ascii string as a suite to recognize

tag_no_case_s

tag_no_case_s!(&str) => &str -> IResult<&str, &str> declares a case-insensitive string as a suite to recognize

tag_s

tag_s!(&str) => &str -> IResult<&str, &str> declares a string as a suite to recognize

take

take!(nb) => &[T] -> IResult<&[T], &[T]> generates a parser consuming the specified number of bytes

take_bits

Consumes the specified number of bits and returns them as the specified type.

take_s

take_s!(nb) => &str -> IResult<&str, &str> generates a parser consuming the specified number of characters

take_str

take_str!(nb) => &[T] -> IResult<&[T], &str> same as take! but returning a &str

take_till

take_till!(T -> bool) => &[T] -> IResult<&[T], &[T]> returns the longest list of bytes until the provided function succeeds

take_till1

take_till1!(T -> bool) => &[T] -> IResult<&[T], &[T]> returns the longest non empty list of bytes until the provided function succeeds

take_till1_s

take_till1_s!(char -> bool) => &str -> IResult<&str, &str> returns the longest non empty list of characters until the provided function succeeds

take_till_s

take_till_s!(char -> bool) => &str -> IResult<&str, &str> returns the longest list of characters until the provided function succeeds

take_until

take_until!(tag) => &[T] -> IResult<&[T], &[T]> consumes data until it finds the specified tag.

take_until1

take_until1!(tag) => &[T] -> IResult<&[T], &[T]> consumes data (at least one byte) until it finds the specified tag

take_until_and_consume

take_until_and_consume!(tag) => &[T] -> IResult<&[T], &[T]> generates a parser consuming bytes until the specified byte sequence is found, and consumes it

take_until_and_consume1

take_until_and_consume1!(tag) => &[T] -> IResult<&[T], &[T]> generates a parser consuming bytes (at least 1) until the specified byte sequence is found, and consumes it

take_until_and_consume_s

take_until_and_consume_s!(&str) => &str -> IResult<&str, &str> generates a parser consuming all chars until the specified string is found and consumes it

take_until_either

take_until_either!(tag) => &[T] -> IResult<&[T], &[T]> consumes data until it finds any of the specified characters

take_until_either1

take_until_either1!(tag) => &[T] -> IResult<&[T], &[T]> consumes data (at least one byte) until it finds any of the specified characters

take_until_either_and_consume

take_until_either_and_consume!(chars) => &[T] -> IResult<&[T], &[T]> consumes data until it finds any of the specified characters, and consume it

take_until_either_and_consume1

take_until_either_and_consume1!(chars) => &[T] -> IResult<&[T], &[T]> consumes data (at least one byte) until it finds any of the specified characters, and consume it

take_until_s

take_until_s!(&str) => &str -> IResult<&str, &str> generates a parser consuming all chars until the specified string is found and leaves it in the remaining input

take_while

take_while!(T -> bool) => &[T] -> IResult<&[T], &[T]> returns the longest list of bytes until the provided function fails.

take_while1

take_while1!(T -> bool) => &[T] -> IResult<&[T], &[T]> returns the longest (non empty) list of bytes until the provided function fails.

take_while1_s

take_while1_s!(char -> bool) => &str -> IResult<&str, &str> returns the longest (non empty) list of characters until the provided function fails.

take_while_m_n

take_while_m_n!(m: usize, n: usize, T -> bool) => &[T] -> IResult<&[T], &[T]> returns a list of bytes or characters for which the provided function returns true. the returned list's size will be at least m, and at most n

take_while_s

take_while_s!(char -> bool) => &str -> IResult<&str, &str> returns the longest list of characters until the provided function fails.

tap

tap!(name: I -> IResult<I,O> => { block }) => I -> IResult<I, O> allows access to the parser's result without affecting it

terminated

terminated!(I -> IResult<I,O>, I -> IResult<I,T>) => I -> IResult<I, O> terminated(X, closing) returns X

try_parse

A bit like std::try!, this macro will return the remaining input and parsed value if the child parser returned Done, and will do an early return for Error and Incomplete this can provide more flexibility than do_parse! if needed

tuple

tuple!(I->IResult<I,A>, I->IResult<I,B>, ... I->IResult<I,X>) => I -> IResult<I, (A, B, ..., X)> chains parsers and assemble the sub results in a tuple.

u16

if the parameter is nom::Endianness::Big, parse a big endian u16 integer, otherwise a little endian u16 integer

u32

if the parameter is nom::Endianness::Big, parse a big endian u32 integer, otherwise a little endian u32 integer

u64

if the parameter is nom::Endianness::Big, parse a big endian u64 integer, otherwise a little endian u64 integer

value

value!(T, R -> IResult<R, S> ) => R -> IResult<R, T>

verify

verify!(I -> IResult<I,O>, O -> bool) => I -> IResult<I, O> returns the result of the child parser if it satisfies a verification function

wrap_sep
ws

ws!(I -> IResult<I,O>) => I -> IResult<I, O>

Enums

CompareResult

indicates wether a comparison was successful, an error, or if more data was needed

Endianness

Configurable endianness

Err

The Err enum indicates the parser was not successful

ErrorKind

indicates which parser returned an error

Needed

Contains information on needed data if a parser returned Incomplete

Traits

AsBytes

casts the input type to a byte slice

AsChar

transforms common types to a char for basic token parsing

AtEof

indicates whether more data can come later in input

Compare

abstracts comparison operations

Convert
ExtendInto

abtracts something which can extend an Extend

FindSubstring

look for a substring in self

FindToken

look for self in the given input stream

HexDisplay
InputIter

abstracts common iteration operations on the input type

InputLength

abstract method to calculate the input length

InputTake

abstracts slicing operations

Offset

useful functions to calculate the offset between slices and show a hexdump of a slice

ParseTo

used to integrate str's parse() method

Slice

slicing operations using ranges

Functions

alpha

Recognizes one or more lowercase and uppercase alphabetic characters: a-zA-Z

alpha0

Recognizes zero or more lowercase and uppercase alphabetic characters: a-zA-Z

alpha1

Recognizes one or more lowercase and uppercase alphabetic characters: a-zA-Z

alphanumeric

Recognizes one or more numerical and alphabetic characters: 0-9a-zA-Z

alphanumeric0

Recognizes zero or more numerical and alphabetic characters: 0-9a-zA-Z

alphanumeric1

Recognizes one or more numerical and alphabetic characters: 0-9a-zA-Z

anychar

matches one byte as a character. Note that the input type will accept a str, but not a &[u8], unlike many other nom parsers.

be_f32

Recognizes big endian 4 bytes floating point number

be_f64

Recognizes big endian 8 bytes floating point number

be_i8

Recognizes a signed 1 byte integer (equivalent to take!(1)

be_i16

Recognizes big endian signed 2 bytes integer

be_i24

Recognizes big endian signed 3 bytes integer

be_i32

Recognizes big endian signed 4 bytes integer

be_i64

Recognizes big endian signed 8 bytes integer

be_u8

Recognizes an unsigned 1 byte integer (equivalent to take!(1)

be_u16

Recognizes big endian unsigned 2 bytes integer

be_u24

Recognizes big endian unsigned 3 byte integer

be_u32

Recognizes big endian unsigned 4 bytes integer

be_u64

Recognizes big endian unsigned 8 bytes integer

begin
code_from_offset
crlf
digit

Recognizes one or more numerical characters: 0-9

digit0

Recognizes zero or more numerical characters: 0-9

digit1

Recognizes one or more numerical characters: 0-9

double

Recognizes floating point number in a byte string and returns a f64

double_s

Recognizes floating point number in a string and returns a f64

eol
error_to_u32
float

Recognizes floating point number in a byte string and returns a f32

float_s

Recognizes floating point number in a string and returns a f32

hex_digit

Recognizes one or more hexadecimal numerical characters: 0-9, A-F, a-f

hex_digit0

Recognizes zero or more hexadecimal numerical characters: 0-9, A-F, a-f

hex_digit1

Recognizes one or more hexadecimal numerical characters: 0-9, A-F, a-f

hex_u32

Recognizes a hex-encoded integer

is_alphabetic

Tests if byte is ASCII alphabetic: A-Z, a-z

is_alphanumeric

Tests if byte is ASCII alphanumeric: A-Z, a-z, 0-9

is_digit

Tests if byte is ASCII digit: 0-9

is_hex_digit

Tests if byte is ASCII hex digit: 0-9, A-F, a-f

is_oct_digit

Tests if byte is ASCII octal digit: 0-7

is_space

Tests if byte is ASCII space or tab

le_f32

Recognizes little endian 4 bytes floating point number

le_f64

Recognizes little endian 8 bytes floating point number

le_i8

Recognizes a signed 1 byte integer (equivalent to take!(1)

le_i16

Recognizes little endian signed 2 bytes integer

le_i24

Recognizes little endian signed 3 bytes integer

le_i32

Recognizes little endian signed 4 bytes integer

le_i64

Recognizes little endian signed 8 bytes integer

le_u8

Recognizes an unsigned 1 byte integer (equivalent to take!(1)

le_u16

Recognizes little endian unsigned 2 bytes integer

le_u24

Recognizes little endian unsigned 3 byte integer

le_u32

Recognizes little endian unsigned 4 bytes integer

le_u64

Recognizes little endian unsigned 8 bytes integer

line_ending

Recognizes an end of line (both '\n' and '\r\n')

multispace

Recognizes one or more spaces, tabs, carriage returns and line feeds

multispace0

Recognizes zero or more spaces, tabs, carriage returns and line feeds

multispace1

Recognizes one or more spaces, tabs, carriage returns and line feeds

need_more
need_more_err
newline

Matches a newline character '\n'

non_empty

Recognizes non empty buffers

not_line_ending
oct_digit

Recognizes one or more octal characters: 0-7

oct_digit0

Recognizes zero or more octal characters: 0-7

oct_digit1

Recognizes one or more octal characters: 0-7

print
print_codes
recognize_float
reset_color
rest

Return the remaining input.

rest_s

Return the remaining input, for strings.

sized_buffer
slice_to_offsets
space

Recognizes one or more spaces and tabs

space0

Recognizes zero or more spaces and tabs

space1

Recognizes one or more spaces and tabs

tab

Matches a tab character '\t'

tag_cl
write_color

Type Definitions

IResult

Holds the result of parsing functions