nom_parse_macros/lib.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398
//! # nom-parse-trait
//!
//! This macro generates a `ParseFrom` implementation for a struct or enum using the provided
//! nom expression(s). The expression should return a tuple for the parsed fields.
//!
//! There are 2 separate macros available, [`parse_from()`] and [`parse_match()`].
//! The first one is really generic and can be useful in many cases, since you have the full
//! flexibility of nom functions and combinators. The second one is a very simple one that
//! matches a string verbatim. This is useful when you have a very simple format that you want
//! to parse.
//!
//! # nom functions
//!
//! The expression in the `parse_from` attribute will be translated to be using valid nom functions.
//! The main function here is to automatically put the namespace before the function name, so you
//! don't need a ton of use statements in your code. But there are also a couple of special cases:
//!
//! - `{}` or `()` will be replaced with a [`nom_parse_trait::ParseFrom::parse`] call for the
//! corresponding field. This is useful when you are using types that have implemented the
//! `ParseFrom` trait already.
//! - Strings, bytes strings and characters will be translated to match the input verbatim using
//! the [`nom::bytes::complete::tag`] function.
//!
//! # Input types that are supported
//!
//! The generated `ParseFrom` implementation is made to be very generic, where it supports any
//! input and error type from nom. This is done with a where clause with many traits that the input
//! should have implemented. All of these are true for the standard `&str` and `&[u8]` types.
//!
//! If you run into a situation where the trait limitations on the input type does not match your
//! use case, please open an issue on the GitHub repository.
//!
//! # Known limitations
//!
//! - When your try to use a custom parser combinator, the nom function parser will try to change
//! all parameters to be nom parsers. This is useful in many cases, but when you need to pass in
//! a normal string for example, it won't work. In these cases, you can define a separate function
//! to wrap the call. I'm not sure how to fix that right now, but I'm open to suggestions.
//!
//! - Since the generated input type is very generic, all functions that you want to use in the
//! nom expression should also be very generic. In the future I might add a way to specify if you
//! want to generate a specific input type, but for now it's not possible.
extern crate proc_macro;
mod fields;
mod nom_packages;
mod string_matching;
use crate::fields::parse_fields;
use crate::nom_packages::update_nom_expression;
use crate::string_matching::parse_string_match;
use itertools::Itertools;
use proc_macro::TokenStream;
use proc_macro2::{Ident, Span};
use quote::{quote, ToTokens};
use std::default::Default;
use syn::{
parse_macro_input, parse_quote, Expr, GenericParam, Generics, Item, ItemEnum, ItemStruct,
LitStr, TypeParam, WhereClause, WherePredicate,
};
/// This macro generates a [`nom_parse_trait::ParseFrom`] implementation for a struct or enum using
/// the provided nom expression(s). The expression should return a tuple for the parsed fields.
///
/// # Examples
///
/// ## Basic struct with fields
///
/// This first example shows how to parse a simple struct with two fields, using the `separated_pair`
/// combinator. Here we also show some of the special parsing that goes on behind the scenes, where
/// the special {} syntax means that it infers the type parser it needs to use in that place. Also,
/// we accept normal strings as matching input, which will be translated to `tag` function calls.
///
/// ```rust
/// use nom_parse_macros::parse_from;
///
/// #[parse_from(separated_pair({}, tuple(space0, ",", space0), {}))]
/// struct NumberPair {
/// x: u32,
/// y: u32,
/// }
/// ```
///
/// ## Basic enum with variants
///
/// This example shows how we can define a format for each variant in an enum. The first variant
/// actually uses the default `ParseFrom` implementation for parsing the u32. The `Numbers` variant
/// uses a custom format, which is a delimited list of u32 values.
///
/// ```rust
/// use nom_parse_macros::parse_from;
///
/// #[parse_from]
/// enum MultipleTypes {
/// Number(u32),
/// #[format(delimited('(', separated_list0(",", {}), ')'))]
/// Numbers(Vec<u32>),
/// }
/// ```
///
/// ## Derived fields
///
/// Sometimes it's useful to have a field that is not actually parsed, but derived from the other
/// fields. This can be done with the `#[derived]` attribute. In this example, we derive the sum of
/// the two fields `x` and `y`.
///
/// ```rust
/// use nom_parse_macros::parse_from;
///
/// #[parse_from(separated_pair({}, tuple(space0, ",", space0), {}))]
/// struct NumberPair {
/// x: u32,
/// y: u32,
/// #[derived(x + y)]
/// sum: u32,
/// }
/// ```
#[proc_macro_attribute]
pub fn parse_from(attrs: TokenStream, object: TokenStream) -> TokenStream {
match parse_macro_input!(object as Item) {
Item::Struct(item_struct) => {
generate_struct_parser(attrs, item_struct)
},
Item::Enum(item_enum) => {
generate_enum_parser(item_enum)
},
_ => (quote! { compiler_error!("Generating ParseFrom implementation only works for structs and enums") }).into()
}
}
fn generate_struct_parser(attrs: TokenStream, mut object: ItemStruct) -> TokenStream {
let mut expression = parse_macro_input! { attrs as Expr };
if let Err(e) = update_nom_expression(&mut expression) {
return e.to_compile_error().into();
}
let fields = match parse_fields(&mut object.fields) {
Ok(fields) => fields,
Err(e) => return e.to_compile_error().into(),
};
let expression_names = fields.get_expression_names();
let derived_expressions = fields.get_derived_expressions();
let create_expr = fields.create_instance_expr(None);
generate_parser(
object.ident.clone(),
object.generics.clone(),
object,
quote! {
let (input, (#(#expression_names),*)) = #expression.parse(input)?;
#(#derived_expressions)*
Ok((input, #create_expr))
},
)
}
fn generate_enum_parser(mut object: ItemEnum) -> TokenStream {
let mut mappings = Vec::new();
let mut mapping_names = Vec::new();
for variant in &mut object.variants {
let format_expr = if let Some((index, attr)) = variant
.attrs
.iter()
.find_position(|attr| attr.path().is_ident("format"))
{
let mut format_expr = match attr.meta.require_list() {
Ok(list) => {
let tokens = list.tokens.clone().into_token_stream().into();
parse_macro_input! { tokens as Expr }
}
Err(e) => return e.to_compile_error().into(),
};
if let Err(e) = update_nom_expression(&mut format_expr) {
return e.to_compile_error().into();
}
variant.attrs.remove(index);
format_expr
} else {
let format_expr = quote! { nom_parse_trait::ParseFrom::parse };
let format_expr = format_expr.into_token_stream().into();
parse_macro_input! { format_expr as Expr }
};
let fields = match parse_fields(&mut variant.fields) {
Ok(fields) => fields,
Err(e) => return e.to_compile_error().into(),
};
let variant_name = variant.ident.clone();
let expression_names = fields.get_expression_names();
let expression_types = fields.get_expression_types();
let derived_expressions = fields.get_derived_expressions();
let create_expr = fields.create_instance_expr(Some(&variant_name));
let mapping_name = Ident::new(
&format!("map_{}", variant_name.to_string().to_lowercase()),
Span::call_site(),
);
mapping_names.push(mapping_name.clone());
if expression_names.is_empty() {
// Parsing a variant without fields
mappings.push(quote! {
let #mapping_name = nom::combinator::map(
#format_expr,
|_| { #create_expr }
);
})
} else {
mappings.push(quote! {
let #mapping_name = nom::combinator::map(
#format_expr,
|(#(#expression_names),*): (#(#expression_types),*)| {
#(#derived_expressions)*
#create_expr
}
);
})
}
}
generate_parser(
object.ident.clone(),
object.generics.clone(),
object,
quote! {
#(#mappings)*
nom::branch::alt((
#(#mapping_names),*
)).parse(input)
},
)
}
/// The `parse_match` macro can be used to match strings verbatim. This is useful when you have
/// a very simple format that you want to parse. The {} gets replaced with a parser for the
/// corresponding field. The rest of the characters are matched verbatim.
///
/// # Example
///
/// This example shows how to parse a three-dimensional vector from a string with a fixed format.
/// As you can see, this macro is limited in its use, but is very straightforward to use in cases
/// where it works.
///
/// ```rust
/// use nom_parse_macros::parse_match;
///
/// #[parse_match("({},{},{})")]
/// struct Vector3 {
/// x: u32,
/// y: u32,
/// z: u32,
/// }
/// ```
///
#[proc_macro_attribute]
pub fn parse_match(attrs: TokenStream, object: TokenStream) -> TokenStream {
let literal = parse_macro_input! { attrs as LitStr };
let mut object = parse_macro_input!(object as ItemStruct);
let fields = match parse_fields(&mut object.fields) {
Ok(fields) => fields,
Err(e) => return e.to_compile_error().into(),
};
match parse_string_match(&fields, literal) {
Ok(parts) => {
let names: Vec<_> = fields.fields.iter().map(|field| field.get_name()).collect();
generate_parser(
object.ident.clone(),
object.generics.clone(),
object,
quote! {
#(#parts)*
Ok((input, Self { #(#names),* }))
},
)
}
Err(e) => e.to_compile_error().into(),
}
}
fn generate_parser(
name: Ident,
generics: Generics,
object: impl ToTokens,
content: impl ToTokens,
) -> TokenStream {
let merged_generics = parser_generics(generics.clone());
let (impl_generics, _, where_statement) = merged_generics.split_for_impl();
let (_, type_generics, _) = generics.split_for_impl();
let tokens = quote! {
#object
impl #impl_generics nom_parse_trait::ParseFrom<I, E> for #name #type_generics
#where_statement
{
fn parse(input: I) -> nom::IResult<I, Self, E> {
use nom::*;
use nom_parse_trait::ParseFrom;
#content
}
}
};
tokens.into()
}
fn parser_generics(mut generics: Generics) -> Generics {
// If there are no generics, start a new one
if generics.params.is_empty() {
generics = Generics::default();
generics.lt_token = Some(Default::default());
generics.gt_token = Some(Default::default());
}
// Generate some extra where predicates for the generics
let extra_parse_from_traits: Vec<WherePredicate> = generics
.params
.iter()
.flat_map(|param| {
if let GenericParam::Type(TypeParam { ident, .. }) = param {
Some(parse_quote! { #ident: nom_parse_trait::ParseFrom<I, E> })
} else {
None
}
})
.collect();
// Add the `I` and `E` generics that the ParseFrom implementation needs
generics
.params
.push(GenericParam::Type(TypeParam::from(Ident::new(
"I",
Span::call_site(),
))));
generics
.params
.push(GenericParam::Type(TypeParam::from(Ident::new(
"E",
Span::call_site(),
))));
if generics.where_clause.is_none() {
generics.where_clause = Some(WhereClause {
where_token: Default::default(),
predicates: Default::default(),
});
}
let where_clause = generics.where_clause.as_mut().unwrap();
for extra_parse_from_traits in extra_parse_from_traits {
where_clause.predicates.push(extra_parse_from_traits);
}
where_clause
.predicates
.push(parse_quote! { I: nom::InputTake + nom::InputLength + nom::Offset + nom::AsBytes });
where_clause
.predicates
.push(parse_quote! { E: nom::error::ParseError<I> });
where_clause.predicates.push(parse_quote! { I: Clone });
where_clause.predicates.push(parse_quote! { I: nom::Slice<std::ops::RangeTo<usize>> + nom::Slice<std::ops::RangeFrom<usize>> + nom::Slice<std::ops::Range<usize>> });
where_clause
.predicates
.push(parse_quote! { I: nom::InputTake + nom::InputLength + nom::Offset + nom::AsBytes });
where_clause
.predicates
.push(parse_quote! { I: nom::InputIter });
where_clause
.predicates
.push(parse_quote! { <I as nom::InputIter>::Item: nom::AsChar + Copy });
where_clause
.predicates
.push(parse_quote! { <I as nom::InputIter>::IterElem: Clone });
where_clause
.predicates
.push(parse_quote! { I: nom::InputTakeAtPosition });
where_clause
.predicates
.push(parse_quote! { <I as nom::InputTakeAtPosition>::Item: nom::AsChar + Copy });
where_clause
.predicates
.push(parse_quote! { I: for<'a> nom::Compare<&'a [u8]> });
where_clause
.predicates
.push(parse_quote! { I: nom::Compare<&'static str> });
where_clause
.predicates
.push(parse_quote! { for<'a> &'a str: nom::FindToken<<I as nom::InputIter>::Item> });
generics
}