[][src]Derive Macro nom_derive::Nom

#[derive(Nom)]
{
    // Attributes available to this derive:
    #[nom]
}

The Nom derive automatically generates a parse function for the structure using nom parsers. It will try to infer parsers for primitive of known types, but also allows you to specify parsers using custom attributes.

Deriving parsers supports struct and enum types.

Many examples are provided, and more can be found in the project tests.

Attributes

Derived parsers can be controlled using the nom attribute, with a sub-attribute. For example, #[nom(Value)].

To specify multiple attributes, use a comma-separated list: #[nom(Debug, Count="4")].

The available attributes are:

AttributeSupportsDescription
BigEndianallSet the endianness to big endian
CondfieldsUsed on an Option<T> to read a value of type T only if the condition is met
CountfieldsSet the expected number of items to parse
DebugallPrint error message and input if parser fails (at runtime)
DebugDerivetop-levelPrint the generated code to stderr during build
DefaultfieldsDo not parse, set a field to the default value for the type
IffieldsSimilar to Cond
IgnorefieldsAn alias for default
LittleEndianallSet the endianness to little endian
MapfieldsParse field, then apply a function
ParsefieldsUse a custom parser function for reading from a file
SelectorallUsed to specify the value matching an enum variant
ValuefieldsStore result of evaluated expression in field
VerifyfieldsAfter parsing, check that condition is true and return an error if false.

See below for examples.

Deriving parsers for Struct

Import the Nom derive attribute:

use nom_derive::Nom;

and add it to structs or enums.

For simple structures, the parsers are automatically generated:

#[derive(Nom)]
struct S {
  a: u32,
  b: u16,
  c: u16
}

This also work for tuple structs:

#[derive(Nom)]
struct S(u32);

Byteorder

By default, integers are parsed are big endian.

The LittleEndian attribute can be applied to a struct to change all integer parsers:

#[derive(Nom)]
#[nom(LittleEndian)]
struct LittleEndianStruct {
  a: u32,
  b: u16,
  c: u16
}

let input = b"\x00\x00\x00\x01\x12\x34\x56\x78";
let res = LittleEndianStruct::parse(input);
assert_eq!(res, Ok((&input[8..],
    LittleEndianStruct{a:0x0100_0000,b:0x3412,c:0x7856}))
);

The BigEndian and LittleEndian attributes can be specified for struct fields. If both per-struct and per-field attributes are present, the more specific wins.

For example, the all fields of the following struct will be parsed as big-endian, except b:

#[derive(Nom)]
#[nom(BigEndian)]
struct MixedEndianStruct {
  a: u32,
  #[nom(LittleEndian)]
  b: u16,
  c: u16
}

Deriving and Inferring Parsers

nom-derive is also able to infer parsers for some usual types: integers, Option, Vec, etc.

If the parser cannot be inferred, a default function will be called. It is also possible to override this using the Parse attribute.

Following sections give more details.

Option types

If a field is an Option<T>, the generated parser is opt(complete(T::parse))

For ex:

#[derive(Nom)]
struct S {
  a: Option<u32>
}

let input = b"\x00\x00\x00\x01";
let res = S::parse(input);
assert_eq!(res, Ok((&input[4..],S{a:Some(1)})));

Vec types

If a field is an Vec<T>, the generated parser is many0(complete(T::parse))

For ex:

#[derive(Nom)]
struct S {
  a: Vec<u16>
}

let input = b"\x00\x00\x00\x01";
let res = S::parse(input);
assert_eq!(res, Ok((&input[4..],S{a:vec![0,1]})));

Count

The Count(n) attribute can be used to specify the number of items to parse.

Notes:

  • the subparser is inferred as usual (item type must be Vec< ... >)
  • the number of items (n) can be any expression, and will be cast to usize

For ex:

#[derive(Nom)]
struct S {
  a: u16,
  #[nom(Count="a")]
  b: Vec<u16>
}

Default parsing function

If a field with type T is not a primitive or known type, the generated parser is T::parse(input).

This function can be automatically derived, or specified as a method for the struct. In that case, the function must be a static method with the same API as a nom combinator, returning the wrapped struct when parsing succeeds.

For example (using Nom derive):

#[derive(Nom)]
struct S2 {
  c: u16
}

#[derive(Nom)]
struct S {
  a: u16,
  b: S2
}

Example (defining parse method):

// no Nom derive
struct S2 {
  c: u16
}

impl S2 {
    fn parse(i:&[u8]) -> IResult<&[u8],S2> {
        map!(
            i,
            le_u16, // little-endian
            |c| S2{c} // return a struct S2
        )
    }
}

#[derive(Nom)]
struct S {
  a: u16,
  b: S2
}

Custom parsers

Sometimes, the default parsers generated automatically are not those you want.

The Parse custom attribute allows for specifying the parser that will be inserted in the nom parser.

The parser is called with input as argument, so the signature of the parser must be equivalent to:

This example is not tested
fn parser(i: &[u8]) -> IResult<T> {
// ...
}

For example, to specify the parser of a field:

#[derive(Nom)]
struct S{
    #[nom(Parse="le_u16")]
    a: u16
}

The Parse argument can be a complex expression:

#[derive(Nom)]
struct S{
    pub a: u8,
    #[nom(Parse="cond(a > 0,be_u16)")]
    pub b: Option<u16>,
}

Note that you are responsible from providing correct code.

Default

If a field is marked as Ignore (or Default), it will not be parsed. Its value will be the default value for the field type.

This is convenient if the structured has more fields than the serialized value.

#[derive(Nom)]
struct S{
    pub a: u8,
    #[nom(Ignore)]
    pub b: Option<u16>,
}

Map

The Map attribute can be used to apply a function to the result of the parser. It is often used combined with the Parse attribute.

#[derive(Nom)]
struct S{
    pub a: u8,
    #[nom(Parse="be_u8", Map = "|x: u8| x.to_string()")]
    pub b: String,
}

Conditional Values

The Cond custom attribute allows for specifying a condition. The generated parser will use the cond! combinator, which calls the child parser only if the condition is met. The type with this attribute must be an Option type.

#[derive(Nom)]
struct S{
    pub a: u8,
    #[nom(Cond="a == 1")]
    pub b: Option<u16>,
}

Value

The Value attribute does not parse data. It is used to store the result of the evaluated expression in the variable.

Previous fields can be used in the expression.

#[derive(Nom)]
struct S{
    pub a: u8,
    #[nom(Value = "a.to_string()")]
    pub b: String,
}

Verifications

The Verify custom attribute allows for specifying a verifying function. The generated parser will use the verify! combinator, which calls the child parser only if is verifies a condition (and otherwise raises an error).

The argument used in verify function is passed as a reference.

#[derive(Nom)]
struct S{
    #[nom(Verify="*a == 1")]
    pub a: u8,
}

Deriving parsers for Enum

The Nom attribute can also used to generate parser for Enum types. The generated parser will used a value (called selector) to determine which attribute variant is parsed. Named and unnamed enums are supported.

In addition of derive(Nom), a Selector attribute must be used:

  • on the structure, to specify the type of selector to match
  • on each variant, to specify the value associated with this variant.
#[derive(Nom)]
#[nom(Selector="u8")]
pub enum U1{
    #[nom(Selector="0")] Field1(u32),
    #[nom(Selector="1")] Field2(Option<u32>),
}

The generated function will look like:

impl U1{
    pub fn parse(i:&[u8), selector: u8) -> IResult<&[u8],U1> {
        match selector {
            ...
        }
    }
}

It can be called either directly (U1::parse(n)) or using nom (call!(U1::parse,n)).

The selector can be a primitive type (u8), or any other type implementing the PartialEq trait.

#[derive(Debug,PartialEq,Eq,Clone,Copy,Nom)]
pub struct MessageType(pub u8);

#[derive(Nom)]
#[nom(Selector="MessageType")]
pub enum U1{
    #[nom(Selector="MessageType(0)")] Field1(u32),
    #[nom(Selector="MessageType(1)")] Field2(Option<u32>),
}

// Example of call from a struct:
#[derive(Nom)]
pub struct S1{
    pub msg_type: MessageType,
    #[nom(Parse="{ |i| U1::parse(i, msg_type) }")]
    pub msg_value: U1
}

Default case

By default, if no value of the selector matches the input value, a nom error ErrorKind::Switch is raised. This can be changed by using _ as selector value for one the variants.

#[derive(Nom)]
#[nom(Selector="u8")]
pub enum U2{
    #[nom(Selector="0")] Field1(u32),
    #[nom(Selector="_")] Field2(u32),
}

If the _ selector is not the last variant, the generated code will use it as the last match to avoid unreachable code.

Special case: specifying parsers for fields

Sometimes, an unnamed field requires a custom parser. In that case, the field (not the variant) must be annotated with attribute Parse.

Named fields:

#[derive(Nom)]
#[nom(Selector="MessageType")]
pub enum U3<'a>{
    #[nom(Selector="MessageType(0)")] Field1{a:u32},
    #[nom(Selector="MessageType(1)")] Field2{
        #[nom(Parse="take(4 as usize)")]
        a: &'a[u8]
    },
}

Unnamed fields:

#[derive(Nom)]
#[nom(Selector="MessageType")]
pub enum U3<'a>{
    #[nom(Selector="MessageType(0)")] Field1(u32),
    #[nom(Selector="MessageType(1)")] Field2(
        #[nom(Parse="take(4 as usize)")] &'a[u8]
    ),
}

Special case: fieldless enums

If the entire enum is fieldless (a list of constant integer values), a parser can be derived if

  • the Enum has a repr(ty) attribute, with ty an integer type
  • the Enum implements the Eq trait

In that case, the Selector attribute must not be specified.

#[repr(u8)]
#[derive(Eq,Nom)]
pub enum U3{
    A,
    B = 2,
    C
}

The generated parser will parse an element of type ty (as Big Endian), try to match to enum values, and return an instance of Enum if it succeeds (wrapped in an IResult).

For ex, U3::parse(b"\x02") will return Ok((&b""[..],U3::B)).

Limitations

Except if the entire enum is fieldless (a list of constant integer values), unit fields are not supported.

Debug

Errors in generated parsers may be hard to understand and debug.

The Debug attribute insert calls to nom's dbg_dmp function, which will print an error message and the input if the parser fails. This attribute can be applied to either fields, or at top-level (all sub-parsers will be wrapped).

This helps resolving parse errors (at runtime).

#[derive(Nom)]
pub struct S {
    pub a: u32,
    #[nom(Debug)]
    pub b: u64,
}

DebugDerive

The DebugDerive attribute, if applied to top-level, makes the generator print the generated code to stderr.

This helps resolving compiler errors.

#[derive(Nom)]
#[nom(DebugDerive)]
pub struct S {
    pub a: u32,
}