1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
use math;
use math::{Point2, Point3, Point4};
use noise_fns::{MultiFractal, NoiseFn, Perlin, Seedable};
use std;

/// Noise function that outputs heterogenous Multifractal noise.
///
/// This is a multifractal method, meaning that it has a fractal dimension
/// that varies with location.
///
/// The result of this multifractal method is that in areas near zero, higher
/// frequencies will be heavily damped, resulting in the terrain remaining
/// smooth. As the value moves further away from zero, higher frequencies will
/// not be as damped and thus will grow more jagged as iteration progresses.
///
#[derive(Clone, Debug)]
pub struct BasicMulti {
    /// Total number of frequency octaves to generate the noise with.
    ///
    /// The number of octaves control the _amount of detail_ in the noise
    /// function. Adding more octaves increases the detail, with the drawback
    /// of increasing the calculation time.
    pub octaves: usize,

    /// The number of cycles per unit length that the noise function outputs.
    pub frequency: f64,

    /// A multiplier that determines how quickly the frequency increases for
    /// each successive octave in the noise function.
    ///
    /// The frequency of each successive octave is equal to the product of the
    /// previous octave's frequency and the lacunarity value.
    ///
    /// A lacunarity of 2.0 results in the frequency doubling every octave. For
    /// almost all cases, 2.0 is a good value to use.
    pub lacunarity: f64,

    /// A multiplier that determines how quickly the amplitudes diminish for
    /// each successive octave in the noise function.
    ///
    /// The amplitude of each successive octave is equal to the product of the
    /// previous octave's amplitude and the persistence value. Increasing the
    /// persistence produces "rougher" noise.
    pub persistence: f64,

    seed: u32,
    sources: Vec<Perlin>,
}

impl BasicMulti {
    pub const DEFAULT_SEED: u32 = 0;
    pub const DEFAULT_OCTAVES: usize = 6;
    pub const DEFAULT_FREQUENCY: f64 = 2.0;
    pub const DEFAULT_LACUNARITY: f64 = std::f64::consts::PI * 2.0 / 3.0;
    pub const DEFAULT_PERSISTENCE: f64 = 0.5;
    pub const MAX_OCTAVES: usize = 32;

    pub fn new() -> Self {
        Self {
            seed: Self::DEFAULT_SEED,
            octaves: Self::DEFAULT_OCTAVES,
            frequency: Self::DEFAULT_FREQUENCY,
            lacunarity: Self::DEFAULT_LACUNARITY,
            persistence: Self::DEFAULT_PERSISTENCE,
            sources: super::build_sources(Self::DEFAULT_SEED, Self::DEFAULT_OCTAVES),
        }
    }
}

impl Default for BasicMulti {
    fn default() -> Self {
        Self::new()
    }
}

impl MultiFractal for BasicMulti {
    fn set_octaves(self, mut octaves: usize) -> Self {
        if self.octaves == octaves {
            return self;
        }

        octaves = math::clamp(octaves, 1, Self::MAX_OCTAVES);
        Self {
            octaves,
            sources: super::build_sources(self.seed, octaves),
            ..self
        }
    }

    fn set_frequency(self, frequency: f64) -> Self {
        Self { frequency, ..self }
    }

    fn set_lacunarity(self, lacunarity: f64) -> Self {
        Self { lacunarity, ..self }
    }

    fn set_persistence(self, persistence: f64) -> Self {
        Self {
            persistence,
            ..self
        }
    }
}

impl Seedable for BasicMulti {
    fn set_seed(self, seed: u32) -> Self {
        if self.seed == seed {
            return self;
        }

        Self {
            seed,
            sources: super::build_sources(seed, self.octaves),
            ..self
        }
    }

    fn seed(&self) -> u32 {
        self.seed
    }
}

/// 2-dimensional `BasicMulti` noise
impl NoiseFn<Point2<f64>> for BasicMulti {
    fn get(&self, mut point: Point2<f64>) -> f64 {
        // First unscaled octave of function; later octaves are scaled.
        point = math::mul2(point, self.frequency);
        let mut result = self.sources[0].get(point);

        // Spectral construction inner loop, where the fractal is built.
        for x in 1..self.octaves {
            // Raise the spatial frequency.
            point = math::mul2(point, self.lacunarity);

            // Get noise value.
            let mut signal = self.sources[x].get(point);

            // Scale the amplitude appropriately for this frequency.
            signal *= self.persistence.powi(x as i32);

            // Scale the signal by the current 'altitude' of the function.
            signal *= result;

            // Add signal to result.
            result += signal;
        }

        // Scale the result to the [-1,1] range.
        result * 0.5
    }
}

/// 3-dimensional `BasicMulti` noise
impl NoiseFn<Point3<f64>> for BasicMulti {
    fn get(&self, mut point: Point3<f64>) -> f64 {
        // First unscaled octave of function; later octaves are scaled.
        point = math::mul3(point, self.frequency);
        let mut result = self.sources[0].get(point);

        // Spectral construction inner loop, where the fractal is built.
        for x in 1..self.octaves {
            // Raise the spatial frequency.
            point = math::mul3(point, self.lacunarity);

            // Get noise value.
            let mut signal = self.sources[x].get(point);

            // Scale the amplitude appropriately for this frequency.
            signal *= self.persistence.powi(x as i32);

            // Scale the signal by the current 'altitude' of the function.
            signal *= result;

            // Add signal to result.
            result += signal;
        }

        // Scale the result to the [-1,1] range.
        result * 0.5
    }
}

/// 4-dimensional `BasicMulti` noise
impl NoiseFn<Point4<f64>> for BasicMulti {
    fn get(&self, mut point: Point4<f64>) -> f64 {
        // First unscaled octave of function; later octaves are scaled.
        point = math::mul4(point, self.frequency);
        let mut result = self.sources[0].get(point);

        // Spectral construction inner loop, where the fractal is built.
        for x in 1..self.octaves {
            // Raise the spatial frequency.
            point = math::mul4(point, self.lacunarity);

            // Get noise value.
            let mut signal = self.sources[x].get(point);

            // Scale the amplitude appropriately for this frequency.
            signal *= self.persistence.powi(x as i32);

            // Scale the signal by the current 'altitude' of the function.
            signal *= result;

            // Add signal to result.
            result += signal;
        }

        // Scale the result to the [-1,1] range.
        result * 0.5
    }
}