1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
use crate::{
    math::vectors::*,
    noise_fns::{MultiFractal, NoiseFn, Seedable},
};
use alloc::vec::Vec;

/// Noise function that outputs heterogenous Multifractal noise.
///
/// This is a multifractal method, meaning that it has a fractal dimension
/// that varies with location.
///
/// The result of this multifractal method is that in areas near zero, higher
/// frequencies will be heavily damped, resulting in the terrain remaining
/// smooth. As the value moves further away from zero, higher frequencies will
/// not be as damped and thus will grow more jagged as iteration progresses.
///
#[derive(Clone, Debug)]
pub struct BasicMulti<T> {
    /// Total number of frequency octaves to generate the noise with.
    ///
    /// The number of octaves control the _amount of detail_ in the noise
    /// function. Adding more octaves increases the detail, with the drawback
    /// of increasing the calculation time.
    pub octaves: usize,

    /// The number of cycles per unit length that the noise function outputs.
    pub frequency: f64,

    /// A multiplier that determines how quickly the frequency increases for
    /// each successive octave in the noise function.
    ///
    /// The frequency of each successive octave is equal to the product of the
    /// previous octave's frequency and the lacunarity value.
    ///
    /// A lacunarity of 2.0 results in the frequency doubling every octave. For
    /// almost all cases, 2.0 is a good value to use.
    pub lacunarity: f64,

    /// A multiplier that determines how quickly the amplitudes diminish for
    /// each successive octave in the noise function.
    ///
    /// The amplitude of each successive octave is equal to the product of the
    /// previous octave's amplitude and the persistence value. Increasing the
    /// persistence produces "rougher" noise.
    pub persistence: f64,

    seed: u32,
    sources: Vec<T>,
    scale_factor: f64,
}

impl<T> BasicMulti<T>
where
    T: Default + Seedable,
{
    pub const DEFAULT_SEED: u32 = 0;
    pub const DEFAULT_OCTAVES: usize = 6;
    pub const DEFAULT_FREQUENCY: f64 = 2.0;
    pub const DEFAULT_LACUNARITY: f64 = core::f64::consts::PI * 2.0 / 3.0;
    pub const DEFAULT_PERSISTENCE: f64 = 0.5;
    pub const MAX_OCTAVES: usize = 32;

    pub fn new(seed: u32) -> Self {
        Self {
            seed,
            octaves: Self::DEFAULT_OCTAVES,
            frequency: Self::DEFAULT_FREQUENCY,
            lacunarity: Self::DEFAULT_LACUNARITY,
            persistence: Self::DEFAULT_PERSISTENCE,
            sources: super::build_sources(seed, Self::DEFAULT_OCTAVES),
            scale_factor: Self::calc_scale_factor(Self::DEFAULT_PERSISTENCE, Self::DEFAULT_OCTAVES),
        }
    }

    pub fn set_sources(self, sources: Vec<T>) -> Self {
        Self { sources, ..self }
    }

    fn calc_scale_factor(persistence: f64, octaves: usize) -> f64 {
        let denom = if octaves == 1 {
            1.0
        } else {
            (1..=octaves).fold(1.0, |acc, x| acc + (acc * persistence.powi(x as i32)))
        };

        1.0 / denom
    }
}

impl<T> Default for BasicMulti<T>
where
    T: Default + Seedable,
{
    fn default() -> Self {
        Self::new(Self::DEFAULT_SEED)
    }
}

impl<T> MultiFractal for BasicMulti<T>
where
    T: Default + Seedable,
{
    fn set_octaves(self, mut octaves: usize) -> Self {
        if self.octaves == octaves {
            return self;
        }

        octaves = octaves.clamp(1, Self::MAX_OCTAVES);
        Self {
            octaves,
            sources: super::build_sources(self.seed, octaves),
            scale_factor: Self::calc_scale_factor(self.persistence, octaves),
            ..self
        }
    }

    fn set_frequency(self, frequency: f64) -> Self {
        Self { frequency, ..self }
    }

    fn set_lacunarity(self, lacunarity: f64) -> Self {
        Self { lacunarity, ..self }
    }

    fn set_persistence(self, persistence: f64) -> Self {
        Self {
            persistence,
            scale_factor: Self::calc_scale_factor(persistence, self.octaves),
            ..self
        }
    }
}

impl<T> Seedable for BasicMulti<T>
where
    T: Default + Seedable,
{
    fn set_seed(self, seed: u32) -> Self {
        if self.seed == seed {
            return self;
        }

        Self {
            seed,
            sources: super::build_sources(seed, self.octaves),
            ..self
        }
    }

    fn seed(&self) -> u32 {
        self.seed
    }
}

/// 2-dimensional `BasicMulti` noise
impl<T> NoiseFn<f64, 2> for BasicMulti<T>
where
    T: NoiseFn<f64, 2>,
{
    fn get(&self, point: [f64; 2]) -> f64 {
        let mut point = Vector2::from(point);

        // First unscaled octave of function; later octaves are scaled.
        point *= self.frequency;
        let mut result = self.sources[0].get(point.into_array());

        // if only 1 octave of noise, then return result unchanged, otherwise process another octave
        if self.octaves > 1 {
            let mut attenuation = self.persistence;
            // Spectral construction inner loop, where the fractal is built.
            for x in 1..self.octaves {
                // Raise the spatial frequency.
                point *= self.lacunarity;

                // Get noise value.
                let mut signal = self.sources[x].get(point.into_array());

                // Scale the amplitude appropriately for this frequency.
                signal *= attenuation;

                // Increase the attenuation for the next octave, to be equal to persistence ^ (x + 1)
                attenuation *= self.persistence;

                // Scale the signal by the current 'altitude' of the function.
                signal *= result;

                // Add signal to result.
                result += signal;
            }
        }

        // Scale the result to the [-1,1] range.
        result * self.scale_factor
    }
}

/// 3-dimensional `BasicMulti` noise
impl<T> NoiseFn<f64, 3> for BasicMulti<T>
where
    T: NoiseFn<f64, 3>,
{
    fn get(&self, point: [f64; 3]) -> f64 {
        let mut point = Vector3::from(point);

        // First unscaled octave of function; later octaves are scaled.
        point *= self.frequency;
        let mut result = self.sources[0].get(point.into_array());

        // if only 1 octave of noise, then return result unchanged, otherwise process another octave
        if self.octaves > 1 {
            let mut attenuation = self.persistence;
            // Spectral construction inner loop, where the fractal is built.
            for x in 1..self.octaves {
                // Raise the spatial frequency.
                point *= self.lacunarity;

                // Get noise value.
                let mut signal = self.sources[x].get(point.into_array());

                // Scale the amplitude appropriately for this frequency.
                signal *= attenuation;

                // Increase the attenuation for the next octave, to be equal to persistence ^ (x + 1)
                attenuation *= self.persistence;

                // Scale the signal by the current 'altitude' of the function.
                signal *= result;

                // Add signal to result.
                result += signal;
            }
        }

        // Scale the result to the [-1,1] range.
        result * self.scale_factor
    }
}

/// 4-dimensional `BasicMulti` noise
impl<T> NoiseFn<f64, 4> for BasicMulti<T>
where
    T: NoiseFn<f64, 4>,
{
    fn get(&self, point: [f64; 4]) -> f64 {
        let mut point = Vector4::from(point);

        // First unscaled octave of function; later octaves are scaled.
        point *= self.frequency;
        let mut result = self.sources[0].get(point.into_array());

        // if only 1 octave of noise, then return result unchanged, otherwise process another octave
        if self.octaves > 1 {
            let mut attenuation = self.persistence;
            // Spectral construction inner loop, where the fractal is built.
            for x in 1..self.octaves {
                // Raise the spatial frequency.
                point *= self.lacunarity;

                // Get noise value.
                let mut signal = self.sources[x].get(point.into_array());

                // Scale the amplitude appropriately for this frequency.
                signal *= attenuation;

                // Increase the attenuation for the next octave, to be equal to persistence ^ (x + 1)
                attenuation *= self.persistence;

                // Scale the signal by the current 'altitude' of the function.
                signal *= result;

                // Add signal to result.
                result += signal;
            }
        }

        // Scale the result to the [-1,1] range.
        result * self.scale_factor
    }
}