noise_functions/base/
cell_value.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
use crate::base::{impl_noise, CustomCellValue};

#[cfg(feature = "nightly-simd")]
use core::simd::{f32x2, f32x4};

/// 2/3/4 dimensional noise of the random value of the closest cell.
#[derive(Debug, Clone, Copy, PartialEq)]
pub struct CellValue {
    pub jitter: f32,
}

impl CellValue {
    pub const fn jitter(mut self, jitter: f32) -> Self {
        self.jitter = jitter;
        self
    }
}

impl_noise!(234 CellValue);

impl Default for CellValue {
    fn default() -> Self {
        Self { jitter: 1.0 }
    }
}

impl CellValue {
    #[inline]
    fn gen2(self, [x, y]: [f32; 2], seed: i32) -> f32 {
        // implementation from FastNoiseLite
        use crate::from_fast_noise_lite::{cell_neighbours, hash2, round_to_int, JITTER_2D, PRIME_X, PRIME_Y, RAND_VECS_2D};

        let jitter = self.jitter * JITTER_2D;

        let xr: i32 = round_to_int(x);
        let yr: i32 = round_to_int(y);

        let mut distance0: f32 = 1e10;
        let mut closest_hash: i32 = 0;

        let mut x_primed: i32 = xr.wrapping_sub(1).wrapping_mul(PRIME_X);
        let y_primed_base: i32 = yr.wrapping_sub(1).wrapping_mul(PRIME_Y);

        for xi in cell_neighbours(xr) {
            let mut y_primed: i32 = y_primed_base;

            for yi in cell_neighbours(yr) {
                let hash: i32 = hash2(seed, x_primed, y_primed);
                let [rand_x, rand_y] = *RAND_VECS_2D[hash].as_array();

                let vec_x: f32 = (xi as f32 - x) + rand_x * jitter;
                let vec_y: f32 = (yi as f32 - y) + rand_y * jitter;

                let new_distance: f32 = vec_x * vec_x + vec_y * vec_y;

                if new_distance < distance0 {
                    distance0 = new_distance;
                    closest_hash = hash;
                }

                y_primed = y_primed.wrapping_add(PRIME_Y);
            }
            x_primed = x_primed.wrapping_add(PRIME_X);
        }

        closest_hash as f32 * (1.0 / 2147483648.0)
    }

    #[inline]
    fn gen3(self, [x, y, z]: [f32; 3], seed: i32) -> f32 {
        // implementation from FastNoiseLite
        use crate::from_fast_noise_lite::{cell_neighbours, hash3, round_to_int, JITTER_3D, PRIME_X, PRIME_Y, PRIME_Z, RAND_VECS_3D};

        let jitter = self.jitter * JITTER_3D;

        let xr: i32 = round_to_int(x);
        let yr: i32 = round_to_int(y);
        let zr: i32 = round_to_int(z);

        let mut distance0: f32 = 1e10;
        let mut closest_hash: i32 = 0;

        let mut x_primed: i32 = xr.wrapping_sub(1).wrapping_mul(PRIME_X);
        let y_primed_base: i32 = yr.wrapping_sub(1).wrapping_mul(PRIME_Y);
        let z_primed_base: i32 = zr.wrapping_sub(1).wrapping_mul(PRIME_Z);

        for xi in cell_neighbours(xr) {
            let mut y_primed: i32 = y_primed_base;

            for yi in cell_neighbours(yr) {
                let mut z_primed: i32 = z_primed_base;

                for zi in cell_neighbours(zr) {
                    let hash: i32 = hash3(seed, x_primed, y_primed, z_primed);
                    let [rand_x, rand_y, rand_z, _] = *RAND_VECS_3D[hash].as_array();

                    let vec_x: f32 = (xi as f32 - x) + rand_x * jitter;
                    let vec_y: f32 = (yi as f32 - y) + rand_y * jitter;
                    let vec_z: f32 = (zi as f32 - z) + rand_z * jitter;

                    let new_distance: f32 = vec_x * vec_x + vec_y * vec_y + vec_z * vec_z;

                    if new_distance < distance0 {
                        distance0 = new_distance;
                        closest_hash = hash;
                    }

                    z_primed = z_primed.wrapping_add(PRIME_Z);
                }
                y_primed = y_primed.wrapping_add(PRIME_Y);
            }
            x_primed = x_primed.wrapping_add(PRIME_X);
        }

        closest_hash as f32 * (1.0 / 2147483648.0)
    }

    #[inline]
    fn gen4(self, point: [f32; 4], seed: i32) -> f32 {
        CustomCellValue::default().jitter(self.jitter).gen4(point, seed)
    }

    #[inline]
    #[cfg(feature = "nightly-simd")]
    fn gen2a(self, point: f32x2, seed: i32) -> f32 {
        // based on the implementation from FastNoiseLite
        use crate::from_fast_noise_lite::{cell_neighbours, hash2, length_squared, round_to_int, splat, JITTER_2D, PRIME_X, PRIME_Y, RAND_VECS_2D};

        let jitter = self.jitter * JITTER_2D;

        let rounded = round_to_int(point);
        let mut distance: f32 = 1e10;
        let mut closest_hash: i32 = 0;

        let mut x_primed = rounded[0].wrapping_sub(1).wrapping_mul(PRIME_X);
        let y_primed_base = rounded[1].wrapping_sub(1).wrapping_mul(PRIME_Y);

        for xi in cell_neighbours(rounded[0]) {
            let mut y_primed = y_primed_base;

            for yi in cell_neighbours(rounded[1]) {
                let hash = hash2(seed, x_primed, y_primed);
                let rand = RAND_VECS_2D[hash].0;
                let coor = f32x2::from_array([xi as f32, yi as f32]);
                let vec = (coor - point) + rand * splat(jitter);
                let new_distance = length_squared(vec);

                if new_distance < distance {
                    distance = new_distance;
                    closest_hash = hash;
                }

                y_primed = y_primed.wrapping_add(PRIME_Y);
            }
            x_primed = x_primed.wrapping_add(PRIME_X);
        }

        closest_hash as f32 * (1.0 / 2147483648.0)
    }

    #[inline]
    #[cfg(feature = "nightly-simd")]
    fn gen3a(self, point: f32x4, seed: i32) -> f32 {
        // based on the implementation from FastNoiseLite
        use crate::from_fast_noise_lite::{cell_neighbours, hash3, length_squared, round_to_int, splat, JITTER_3D, PRIME_X, PRIME_Y, PRIME_Z, RAND_VECS_3D};

        let jitter = self.jitter * JITTER_3D;

        let rounded = round_to_int(point);

        let mut distance: f32 = 1e10;
        let mut closest_hash: i32 = 0;

        let mut x_primed = rounded[0].wrapping_sub(1).wrapping_mul(PRIME_X);
        let y_primed_base = rounded[1].wrapping_sub(1).wrapping_mul(PRIME_Y);
        let z_primed_base = rounded[2].wrapping_sub(1).wrapping_mul(PRIME_Z);

        for xi in cell_neighbours(rounded[0]) {
            let mut y_primed = y_primed_base;

            for yi in cell_neighbours(rounded[1]) {
                let mut z_primed = z_primed_base;

                for zi in cell_neighbours(rounded[2]) {
                    let hash = hash3(seed, x_primed, y_primed, z_primed);
                    let rand = RAND_VECS_3D[hash].0;
                    let coor = f32x4::from_array([xi as f32, yi as f32, zi as f32, zi as f32]);
                    let vec = (coor - point) + rand * splat(jitter);
                    let new_distance = length_squared(vec);

                    if new_distance < distance {
                        distance = new_distance;
                        closest_hash = hash;
                    }

                    z_primed = z_primed.wrapping_add(PRIME_Z);
                }
                y_primed = y_primed.wrapping_add(PRIME_Y);
            }
            x_primed = x_primed.wrapping_add(PRIME_X);
        }

        closest_hash as f32 * (1.0 / 2147483648.0)
    }

    #[inline]
    #[cfg(feature = "nightly-simd")]
    fn gen4a(self, point: f32x4, seed: i32) -> f32 {
        CustomCellValue::default().jitter(self.jitter).gen4a(point, seed)
    }
}