1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
/*
* Copyright (c) Peter Bjorklund. All rights reserved. https://github.com/nimble-rust/nimble
* Licensed under the MIT License. See LICENSE in the project root for license information.
*/
use discoid::discoid::DiscoidBuffer;
use crate::TickId;
#[derive(Clone)]
pub struct PendingStepInfo<StepT: Clone> {
pub step: StepT,
pub tick_id: TickId,
}
/// Manages a sequence of pending steps that are queued to be executed at specific ticks in a game loop.
///
/// This struct contains a buffer (`DiscoidBuffer`) of `PendingStepInfo` elements, designed to handle
/// multiple steps that are pending execution across different ticks.
///
/// # Type Parameters
///
/// * `T` - Represents the type of steps stored within the buffer. As a generic parameter, it allows
/// the `PendingSteps` struct to be flexible and applicable to various types of games or simulations
/// where different actions are defined as steps.
///
/// # Fields
///
/// * `steps` - A circular buffer (implemented via `DiscoidBuffer`) optimized for storing and retrieving
/// pending steps efficiently.
///
/// * `front_tick_id` - The tick ID of the first step in the buffer.
///
/// * `capacity` - The maximum number of steps that can be stored in the buffer. This parameter helps
/// control memory usage and maintain performance.
///
/// # Examples
///
/// ```
/// use discoid::discoid::DiscoidBuffer;
/// use tick_id::TickId;
/// use nimble_steps::pending_steps::PendingSteps;
///
/// let pending_steps = PendingSteps::<i32>::new(10, TickId::new(1));
/// ```
pub struct PendingSteps<T: Clone> {
steps: DiscoidBuffer<PendingStepInfo<T>>,
front_tick_id: TickId,
capacity: usize,
}
impl<T: Clone> PendingSteps<T> {
pub fn new(window_size: usize, tick_id: TickId) -> Self {
Self {
steps: DiscoidBuffer::new(window_size),
front_tick_id: tick_id,
capacity: window_size,
}
}
pub fn set(&mut self, tick_id: TickId, step: T) -> Result<(), String> {
let index_in_discoid = tick_id.value() - self.front_tick_id.value();
if index_in_discoid >= self.capacity as u32 {
// self.steps.capacity()
return Err("pending_steps: out of scope".to_string());
}
self.steps.set_at_index(
index_in_discoid as usize,
PendingStepInfo::<T> { step, tick_id },
);
Ok(())
}
pub fn discard_up_to(&mut self, tick_id: TickId) {
let count_in_discoid = tick_id - self.front_tick_id;
if count_in_discoid < 0 {
return;
}
self.steps.discard_front(count_in_discoid as usize);
}
pub fn is_empty(&self) -> bool {
self.steps.get_ref_at_index(0).is_none()
}
pub fn pop(&mut self) -> PendingStepInfo<T> {
let value = self.steps.get_ref_at_index(0).unwrap().clone();
self.steps.discard_front(1);
value
}
pub fn front_tick_id(&self) -> Option<TickId> {
self.steps.get_ref_at_index(0).map(|info| info.tick_id)
}
}