1use std::collections::HashMap;
10use std::fs;
11use std::fs::File;
12use std::io::{BufReader, BufWriter};
13use std::path::Path;
14
15use serde::{Deserialize, Serialize};
16
17use ndarray::{s, Array1, Array2, Axis};
18use rayon::prelude::*;
19
20use crate::codec::ResidualCodec;
21use crate::error::Error;
22use crate::error::Result;
23use crate::index::Metadata;
24use crate::kmeans::compute_kmeans;
25use crate::kmeans::ComputeKmeansConfig;
26use crate::utils::quantile;
27
28const DEFAULT_BATCH_SIZE: usize = 50_000;
30
31#[derive(Debug, Clone, Serialize, Deserialize)]
33pub struct UpdateConfig {
34 pub batch_size: usize,
36 pub kmeans_niters: usize,
38 pub max_points_per_centroid: usize,
40 pub n_samples_kmeans: Option<usize>,
42 pub seed: u64,
44 pub start_from_scratch: usize,
46 pub buffer_size: usize,
48}
49
50impl Default for UpdateConfig {
51 fn default() -> Self {
52 Self {
53 batch_size: DEFAULT_BATCH_SIZE,
54 kmeans_niters: 4,
55 max_points_per_centroid: 256,
56 n_samples_kmeans: None,
57 seed: 42,
58 start_from_scratch: 999,
59 buffer_size: 100,
60 }
61 }
62}
63
64impl UpdateConfig {
65 pub fn to_kmeans_config(&self) -> ComputeKmeansConfig {
67 ComputeKmeansConfig {
68 kmeans_niters: self.kmeans_niters,
69 max_points_per_centroid: self.max_points_per_centroid,
70 seed: self.seed,
71 n_samples_kmeans: self.n_samples_kmeans,
72 num_partitions: None,
73 }
74 }
75}
76
77pub fn load_buffer(index_path: &Path) -> Result<Vec<Array2<f32>>> {
86 use ndarray_npy::ReadNpyExt;
87
88 let buffer_path = index_path.join("buffer.npy");
89 let lengths_path = index_path.join("buffer_lengths.json");
90
91 if !buffer_path.exists() {
92 return Ok(Vec::new());
93 }
94
95 let flat: Array2<f32> = match Array2::read_npy(File::open(&buffer_path)?) {
97 Ok(arr) => arr,
98 Err(_) => return Ok(Vec::new()),
99 };
100
101 if lengths_path.exists() {
103 let lengths: Vec<i64> =
104 serde_json::from_reader(BufReader::new(File::open(&lengths_path)?))?;
105
106 let mut result = Vec::with_capacity(lengths.len());
107 let mut offset = 0;
108
109 for &len in &lengths {
110 let len_usize = len as usize;
111 if offset + len_usize > flat.nrows() {
112 break;
113 }
114 let doc_emb = flat.slice(s![offset..offset + len_usize, ..]).to_owned();
115 result.push(doc_emb);
116 offset += len_usize;
117 }
118
119 return Ok(result);
120 }
121
122 Ok(vec![flat])
124}
125
126pub fn save_buffer(index_path: &Path, embeddings: &[Array2<f32>]) -> Result<()> {
130 use ndarray_npy::WriteNpyExt;
131
132 let buffer_path = index_path.join("buffer.npy");
133
134 if embeddings.is_empty() {
137 return Ok(());
138 }
139
140 let dim = embeddings[0].ncols();
141 let total_rows: usize = embeddings.iter().map(|e| e.nrows()).sum();
142
143 let mut flat = Array2::<f32>::zeros((total_rows, dim));
144 let mut offset = 0;
145 let mut lengths = Vec::new();
146
147 for emb in embeddings {
148 let n = emb.nrows();
149 flat.slice_mut(s![offset..offset + n, ..]).assign(emb);
150 lengths.push(n as i64);
151 offset += n;
152 }
153
154 flat.write_npy(File::create(&buffer_path)?)?;
155
156 let lengths_path = index_path.join("buffer_lengths.json");
158 serde_json::to_writer(BufWriter::new(File::create(&lengths_path)?), &lengths)?;
159
160 let info_path = index_path.join("buffer_info.json");
162 let buffer_info = serde_json::json!({ "num_docs": embeddings.len() });
163 serde_json::to_writer(BufWriter::new(File::create(&info_path)?), &buffer_info)?;
164
165 Ok(())
166}
167
168pub fn load_buffer_info(index_path: &Path) -> Result<usize> {
172 let info_path = index_path.join("buffer_info.json");
173 if !info_path.exists() {
174 return Ok(0);
175 }
176
177 let info: serde_json::Value = serde_json::from_reader(BufReader::new(File::open(&info_path)?))?;
178
179 Ok(info.get("num_docs").and_then(|v| v.as_u64()).unwrap_or(0) as usize)
180}
181
182pub fn clear_buffer(index_path: &Path) -> Result<()> {
184 let buffer_path = index_path.join("buffer.npy");
185 let lengths_path = index_path.join("buffer_lengths.json");
186 let info_path = index_path.join("buffer_info.json");
187
188 if buffer_path.exists() {
189 fs::remove_file(&buffer_path)?;
190 }
191 if lengths_path.exists() {
192 fs::remove_file(&lengths_path)?;
193 }
194 if info_path.exists() {
195 fs::remove_file(&info_path)?;
196 }
197
198 Ok(())
199}
200
201pub fn load_embeddings_npy(index_path: &Path) -> Result<Vec<Array2<f32>>> {
206 use ndarray_npy::ReadNpyExt;
207
208 let emb_path = index_path.join("embeddings.npy");
209 let lengths_path = index_path.join("embeddings_lengths.json");
210
211 if !emb_path.exists() {
212 return Ok(Vec::new());
213 }
214
215 let flat: Array2<f32> = Array2::read_npy(File::open(&emb_path)?)?;
217
218 if lengths_path.exists() {
220 let lengths: Vec<i64> =
221 serde_json::from_reader(BufReader::new(File::open(&lengths_path)?))?;
222
223 let mut result = Vec::with_capacity(lengths.len());
224 let mut offset = 0;
225
226 for &len in &lengths {
227 let len_usize = len as usize;
228 if offset + len_usize > flat.nrows() {
229 break;
230 }
231 let doc_emb = flat.slice(s![offset..offset + len_usize, ..]).to_owned();
232 result.push(doc_emb);
233 offset += len_usize;
234 }
235
236 return Ok(result);
237 }
238
239 Ok(vec![flat])
241}
242
243pub fn save_embeddings_npy(index_path: &Path, embeddings: &[Array2<f32>]) -> Result<()> {
249 use ndarray_npy::WriteNpyExt;
250
251 if embeddings.is_empty() {
252 return Ok(());
253 }
254
255 let dim = embeddings[0].ncols();
256 let total_rows: usize = embeddings.iter().map(|e| e.nrows()).sum();
257
258 let mut flat = Array2::<f32>::zeros((total_rows, dim));
259 let mut offset = 0;
260 let mut lengths = Vec::with_capacity(embeddings.len());
261
262 for emb in embeddings {
263 let n = emb.nrows();
264 flat.slice_mut(s![offset..offset + n, ..]).assign(emb);
265 lengths.push(n as i64);
266 offset += n;
267 }
268
269 let emb_path = index_path.join("embeddings.npy");
271 flat.write_npy(File::create(&emb_path)?)?;
272
273 let lengths_path = index_path.join("embeddings_lengths.json");
275 serde_json::to_writer(BufWriter::new(File::create(&lengths_path)?), &lengths)?;
276
277 Ok(())
278}
279
280pub fn clear_embeddings_npy(index_path: &Path) -> Result<()> {
282 let emb_path = index_path.join("embeddings.npy");
283 let lengths_path = index_path.join("embeddings_lengths.json");
284
285 if emb_path.exists() {
286 fs::remove_file(&emb_path)?;
287 }
288 if lengths_path.exists() {
289 fs::remove_file(&lengths_path)?;
290 }
291 Ok(())
292}
293
294pub fn embeddings_npy_exists(index_path: &Path) -> bool {
296 index_path.join("embeddings.npy").exists()
297}
298
299pub fn load_cluster_threshold(index_path: &Path) -> Result<f32> {
305 use ndarray_npy::ReadNpyExt;
306
307 let thresh_path = index_path.join("cluster_threshold.npy");
308 if !thresh_path.exists() {
309 return Err(Error::Update("cluster_threshold.npy not found".into()));
310 }
311
312 let arr: Array1<f32> = Array1::read_npy(File::open(&thresh_path)?)?;
313 Ok(arr[0])
314}
315
316pub fn update_cluster_threshold(
318 index_path: &Path,
319 new_residual_norms: &Array1<f32>,
320 old_total_embeddings: usize,
321) -> Result<()> {
322 use ndarray_npy::{ReadNpyExt, WriteNpyExt};
323
324 let new_count = new_residual_norms.len();
325 if new_count == 0 {
326 return Ok(());
327 }
328
329 let new_threshold = quantile(new_residual_norms, 0.75);
330
331 let thresh_path = index_path.join("cluster_threshold.npy");
332 let final_threshold = if thresh_path.exists() {
333 let old_arr: Array1<f32> = Array1::read_npy(File::open(&thresh_path)?)?;
334 let old_threshold = old_arr[0];
335 let total = old_total_embeddings + new_count;
336 (old_threshold * old_total_embeddings as f32 + new_threshold * new_count as f32)
337 / total as f32
338 } else {
339 new_threshold
340 };
341
342 Array1::from_vec(vec![final_threshold]).write_npy(File::create(&thresh_path)?)?;
343
344 Ok(())
345}
346
347fn find_outliers(
355 flat_embeddings: &Array2<f32>,
356 centroids: &Array2<f32>,
357 threshold_sq: f32,
358) -> Vec<usize> {
359 flat_embeddings
360 .axis_iter(Axis(0))
361 .into_par_iter()
362 .enumerate()
363 .filter_map(|(i, emb)| {
364 let min_dist_sq = centroids
366 .axis_iter(Axis(0))
367 .map(|c| {
368 emb.iter()
370 .zip(c.iter())
371 .map(|(a, b)| (a - b).powi(2))
372 .sum::<f32>()
373 })
374 .fold(f32::INFINITY, f32::min);
375
376 if min_dist_sq > threshold_sq {
377 Some(i)
378 } else {
379 None
380 }
381 })
382 .collect()
383}
384
385pub fn update_centroids(
397 index_path: &Path,
398 new_embeddings: &[Array2<f32>],
399 cluster_threshold: f32,
400 config: &UpdateConfig,
401) -> Result<usize> {
402 use ndarray_npy::{ReadNpyExt, WriteNpyExt};
403
404 let centroids_path = index_path.join("centroids.npy");
405 if !centroids_path.exists() {
406 return Ok(0);
407 }
408
409 let existing_centroids: Array2<f32> = Array2::read_npy(File::open(¢roids_path)?)?;
411
412 let dim = existing_centroids.ncols();
414 let total_tokens: usize = new_embeddings.iter().map(|e| e.nrows()).sum();
415
416 if total_tokens == 0 {
417 return Ok(0);
418 }
419
420 let mut flat_embeddings = Array2::<f32>::zeros((total_tokens, dim));
421 let mut offset = 0;
422
423 for emb in new_embeddings {
424 let n = emb.nrows();
425 flat_embeddings
426 .slice_mut(s![offset..offset + n, ..])
427 .assign(emb);
428 offset += n;
429 }
430
431 let threshold_sq = cluster_threshold * cluster_threshold;
433 let outlier_indices = find_outliers(&flat_embeddings, &existing_centroids, threshold_sq);
434
435 let num_outliers = outlier_indices.len();
436 if num_outliers == 0 {
437 return Ok(0);
438 }
439
440 let mut outliers = Array2::<f32>::zeros((num_outliers, dim));
442 for (i, &idx) in outlier_indices.iter().enumerate() {
443 outliers.row_mut(i).assign(&flat_embeddings.row(idx));
444 }
445
446 let target_k =
449 ((num_outliers as f64 / config.max_points_per_centroid as f64).ceil() as usize).max(1) * 4;
450 let k_update = target_k.min(num_outliers); let kmeans_config = ComputeKmeansConfig {
454 kmeans_niters: config.kmeans_niters,
455 max_points_per_centroid: config.max_points_per_centroid,
456 seed: config.seed,
457 n_samples_kmeans: config.n_samples_kmeans,
458 num_partitions: Some(k_update),
459 };
460
461 let outlier_docs: Vec<Array2<f32>> = outlier_indices
463 .iter()
464 .map(|&idx| flat_embeddings.slice(s![idx..idx + 1, ..]).to_owned())
465 .collect();
466
467 let new_centroids = compute_kmeans(&outlier_docs, &kmeans_config)?;
468 let k_new = new_centroids.nrows();
469
470 let new_num_centroids = existing_centroids.nrows() + k_new;
472 let mut final_centroids = Array2::<f32>::zeros((new_num_centroids, dim));
473 final_centroids
474 .slice_mut(s![..existing_centroids.nrows(), ..])
475 .assign(&existing_centroids);
476 final_centroids
477 .slice_mut(s![existing_centroids.nrows().., ..])
478 .assign(&new_centroids);
479
480 final_centroids.write_npy(File::create(¢roids_path)?)?;
482
483 let ivf_lengths_path = index_path.join("ivf_lengths.npy");
485 if ivf_lengths_path.exists() {
486 let old_lengths: Array1<i32> = Array1::read_npy(File::open(&ivf_lengths_path)?)?;
487 let mut new_lengths = Array1::<i32>::zeros(new_num_centroids);
488 new_lengths
489 .slice_mut(s![..old_lengths.len()])
490 .assign(&old_lengths);
491 new_lengths.write_npy(File::create(&ivf_lengths_path)?)?;
492 }
493
494 let meta_path = index_path.join("metadata.json");
496 if meta_path.exists() {
497 let mut meta: serde_json::Value =
498 serde_json::from_reader(BufReader::new(File::open(&meta_path)?))?;
499
500 if let Some(obj) = meta.as_object_mut() {
501 obj.insert("num_partitions".to_string(), new_num_centroids.into());
502 }
503
504 serde_json::to_writer_pretty(BufWriter::new(File::create(&meta_path)?), &meta)?;
505 }
506
507 Ok(k_new)
508}
509
510pub fn update_index(
528 embeddings: &[Array2<f32>],
529 index_path: &str,
530 codec: &ResidualCodec,
531 batch_size: Option<usize>,
532 update_threshold: bool,
533) -> Result<usize> {
534 let batch_size = batch_size.unwrap_or(DEFAULT_BATCH_SIZE);
535 let index_dir = Path::new(index_path);
536
537 let metadata_path = index_dir.join("metadata.json");
539 let metadata: Metadata = serde_json::from_reader(BufReader::new(
540 File::open(&metadata_path)
541 .map_err(|e| Error::IndexLoad(format!("Failed to open metadata: {}", e)))?,
542 ))?;
543
544 let num_existing_chunks = metadata.num_chunks;
545 let old_num_documents = metadata.num_documents;
546 let old_total_embeddings = metadata.num_embeddings;
547 let num_centroids = codec.num_centroids();
548 let embedding_dim = codec.embedding_dim();
549 let nbits = metadata.nbits;
550
551 let mut start_chunk_idx = num_existing_chunks;
553 let mut append_to_last = false;
554 let mut current_emb_offset = old_total_embeddings;
555
556 if start_chunk_idx > 0 {
558 let last_idx = start_chunk_idx - 1;
559 let last_meta_path = index_dir.join(format!("{}.metadata.json", last_idx));
560
561 if last_meta_path.exists() {
562 let last_meta: serde_json::Value =
563 serde_json::from_reader(BufReader::new(File::open(&last_meta_path).map_err(
564 |e| Error::IndexLoad(format!("Failed to open chunk metadata: {}", e)),
565 )?))?;
566
567 if let Some(nd) = last_meta.get("num_documents").and_then(|x| x.as_u64()) {
568 if nd < 2000 {
569 start_chunk_idx = last_idx;
570 append_to_last = true;
571
572 if let Some(off) = last_meta.get("embedding_offset").and_then(|x| x.as_u64()) {
573 current_emb_offset = off as usize;
574 } else {
575 let embs_in_last = last_meta
576 .get("num_embeddings")
577 .and_then(|x| x.as_u64())
578 .unwrap_or(0) as usize;
579 current_emb_offset = old_total_embeddings - embs_in_last;
580 }
581 }
582 }
583 }
584 }
585
586 let num_new_documents = embeddings.len();
588 let n_new_chunks = (num_new_documents as f64 / batch_size as f64).ceil() as usize;
589
590 let mut new_codes_accumulated: Vec<Vec<usize>> = Vec::new();
591 let mut new_doclens_accumulated: Vec<i64> = Vec::new();
592 let mut all_residual_norms: Vec<f32> = Vec::new();
593
594 let progress = indicatif::ProgressBar::new(n_new_chunks as u64);
595 progress.set_message("Updating index...");
596
597 let packed_dim = embedding_dim * nbits / 8;
598
599 for i in 0..n_new_chunks {
600 let global_chunk_idx = start_chunk_idx + i;
601 let chk_offset = i * batch_size;
602 let chk_end = (chk_offset + batch_size).min(num_new_documents);
603 let chunk_docs = &embeddings[chk_offset..chk_end];
604
605 let mut chk_doclens: Vec<i64> = chunk_docs.iter().map(|d| d.nrows() as i64).collect();
607 let total_tokens: usize = chk_doclens.iter().sum::<i64>() as usize;
608
609 let mut batch_embeddings = ndarray::Array2::<f32>::zeros((total_tokens, embedding_dim));
611 let mut offset = 0;
612 for doc in chunk_docs {
613 let n = doc.nrows();
614 batch_embeddings
615 .slice_mut(s![offset..offset + n, ..])
616 .assign(doc);
617 offset += n;
618 }
619
620 let batch_codes = codec.compress_into_codes(&batch_embeddings);
622
623 let mut batch_residuals = batch_embeddings;
625 {
626 let centroids = &codec.centroids;
627 batch_residuals
628 .axis_iter_mut(Axis(0))
629 .into_par_iter()
630 .zip(batch_codes.as_slice().unwrap().par_iter())
631 .for_each(|(mut row, &code)| {
632 let centroid = centroids.row(code);
633 row.iter_mut()
634 .zip(centroid.iter())
635 .for_each(|(r, c)| *r -= c);
636 });
637 }
638
639 if update_threshold {
641 for row in batch_residuals.axis_iter(Axis(0)) {
642 let norm = row.dot(&row).sqrt();
643 all_residual_norms.push(norm);
644 }
645 }
646
647 let batch_packed = codec.quantize_residuals(&batch_residuals)?;
649
650 let mut chk_codes_list: Vec<usize> = batch_codes.iter().copied().collect();
652 let mut chk_residuals_list: Vec<u8> = batch_packed.iter().copied().collect();
653
654 let mut code_offset = 0;
656 for &len in &chk_doclens {
657 let len_usize = len as usize;
658 let codes: Vec<usize> = batch_codes
659 .slice(s![code_offset..code_offset + len_usize])
660 .iter()
661 .copied()
662 .collect();
663 new_codes_accumulated.push(codes);
664 new_doclens_accumulated.push(len);
665 code_offset += len_usize;
666 }
667
668 if i == 0 && append_to_last {
670 use ndarray_npy::ReadNpyExt;
671
672 let old_doclens_path = index_dir.join(format!("doclens.{}.json", global_chunk_idx));
673
674 if old_doclens_path.exists() {
675 let old_doclens: Vec<i64> =
676 serde_json::from_reader(BufReader::new(File::open(&old_doclens_path)?))?;
677
678 let old_codes_path = index_dir.join(format!("{}.codes.npy", global_chunk_idx));
679 let old_residuals_path =
680 index_dir.join(format!("{}.residuals.npy", global_chunk_idx));
681
682 let old_codes: Array1<i64> = Array1::read_npy(File::open(&old_codes_path)?)?;
683 let old_residuals: Array2<u8> = Array2::read_npy(File::open(&old_residuals_path)?)?;
684
685 let mut combined_codes: Vec<usize> =
687 old_codes.iter().map(|&x| x as usize).collect();
688 combined_codes.extend(chk_codes_list);
689 chk_codes_list = combined_codes;
690
691 let mut combined_residuals: Vec<u8> = old_residuals.iter().copied().collect();
692 combined_residuals.extend(chk_residuals_list);
693 chk_residuals_list = combined_residuals;
694
695 let mut combined_doclens = old_doclens;
696 combined_doclens.extend(chk_doclens);
697 chk_doclens = combined_doclens;
698 }
699 }
700
701 {
703 use ndarray_npy::WriteNpyExt;
704
705 let codes_arr: Array1<i64> = chk_codes_list.iter().map(|&x| x as i64).collect();
706 let codes_path = index_dir.join(format!("{}.codes.npy", global_chunk_idx));
707 codes_arr.write_npy(File::create(&codes_path)?)?;
708
709 let num_tokens = chk_codes_list.len();
710 let residuals_arr =
711 Array2::from_shape_vec((num_tokens, packed_dim), chk_residuals_list)
712 .map_err(|e| Error::Shape(format!("Failed to reshape residuals: {}", e)))?;
713 let residuals_path = index_dir.join(format!("{}.residuals.npy", global_chunk_idx));
714 residuals_arr.write_npy(File::create(&residuals_path)?)?;
715 }
716
717 let doclens_path = index_dir.join(format!("doclens.{}.json", global_chunk_idx));
719 serde_json::to_writer(BufWriter::new(File::create(&doclens_path)?), &chk_doclens)?;
720
721 let chk_meta = serde_json::json!({
723 "num_documents": chk_doclens.len(),
724 "num_embeddings": chk_codes_list.len(),
725 "embedding_offset": current_emb_offset,
726 });
727 current_emb_offset += chk_codes_list.len();
728
729 let meta_path = index_dir.join(format!("{}.metadata.json", global_chunk_idx));
730 serde_json::to_writer_pretty(BufWriter::new(File::create(&meta_path)?), &chk_meta)?;
731
732 progress.inc(1);
733 }
734 progress.finish();
735
736 if update_threshold && !all_residual_norms.is_empty() {
738 let norms = Array1::from_vec(all_residual_norms);
739 update_cluster_threshold(index_dir, &norms, old_total_embeddings)?;
740 }
741
742 let mut partition_pids_map: HashMap<usize, Vec<i64>> = HashMap::new();
744 let mut pid_counter = old_num_documents as i64;
745
746 for doc_codes in &new_codes_accumulated {
747 for &code in doc_codes {
748 partition_pids_map
749 .entry(code)
750 .or_default()
751 .push(pid_counter);
752 }
753 pid_counter += 1;
754 }
755
756 {
758 use ndarray_npy::{ReadNpyExt, WriteNpyExt};
759
760 let ivf_path = index_dir.join("ivf.npy");
761 let ivf_lengths_path = index_dir.join("ivf_lengths.npy");
762
763 let old_ivf: Array1<i64> = if ivf_path.exists() {
764 Array1::read_npy(File::open(&ivf_path)?)?
765 } else {
766 Array1::zeros(0)
767 };
768
769 let old_ivf_lengths: Array1<i32> = if ivf_lengths_path.exists() {
770 Array1::read_npy(File::open(&ivf_lengths_path)?)?
771 } else {
772 Array1::zeros(num_centroids)
773 };
774
775 let mut old_offsets = vec![0i64];
777 for &len in old_ivf_lengths.iter() {
778 old_offsets.push(old_offsets.last().unwrap() + len as i64);
779 }
780
781 let mut new_ivf_data: Vec<i64> = Vec::new();
783 let mut new_ivf_lengths: Vec<i32> = Vec::with_capacity(num_centroids);
784
785 for centroid_id in 0..num_centroids {
786 let old_start = old_offsets[centroid_id] as usize;
788 let old_len = if centroid_id < old_ivf_lengths.len() {
789 old_ivf_lengths[centroid_id] as usize
790 } else {
791 0
792 };
793
794 let mut pids: Vec<i64> = if old_len > 0 && old_start + old_len <= old_ivf.len() {
795 old_ivf.slice(s![old_start..old_start + old_len]).to_vec()
796 } else {
797 Vec::new()
798 };
799
800 if let Some(new_pids) = partition_pids_map.get(¢roid_id) {
802 pids.extend(new_pids);
803 }
804
805 pids.sort_unstable();
807 pids.dedup();
808
809 new_ivf_lengths.push(pids.len() as i32);
810 new_ivf_data.extend(pids);
811 }
812
813 let new_ivf = Array1::from_vec(new_ivf_data);
815 new_ivf.write_npy(File::create(&ivf_path)?)?;
816
817 let new_lengths = Array1::from_vec(new_ivf_lengths);
818 new_lengths.write_npy(File::create(&ivf_lengths_path)?)?;
819 }
820
821 let new_total_chunks = start_chunk_idx + n_new_chunks;
823 let new_tokens_count: i64 = new_doclens_accumulated.iter().sum();
824 let num_embeddings = old_total_embeddings + new_tokens_count as usize;
825 let total_num_documents = old_num_documents + num_new_documents;
826
827 let new_avg_doclen = if total_num_documents > 0 {
828 let old_sum = metadata.avg_doclen * old_num_documents as f64;
829 (old_sum + new_tokens_count as f64) / total_num_documents as f64
830 } else {
831 0.0
832 };
833
834 let new_metadata = Metadata {
835 num_chunks: new_total_chunks,
836 nbits,
837 num_partitions: num_centroids,
838 num_embeddings,
839 avg_doclen: new_avg_doclen,
840 num_documents: total_num_documents,
841 };
842
843 serde_json::to_writer_pretty(BufWriter::new(File::create(&metadata_path)?), &new_metadata)?;
844
845 Ok(num_new_documents)
846}
847
848#[cfg(test)]
849mod tests {
850 use super::*;
851
852 #[test]
853 fn test_update_config_default() {
854 let config = UpdateConfig::default();
855 assert_eq!(config.batch_size, 50_000);
856 assert_eq!(config.buffer_size, 100);
857 assert_eq!(config.start_from_scratch, 999);
858 }
859
860 #[test]
861 fn test_find_outliers() {
862 let centroids = Array2::from_shape_vec((2, 2), vec![0.0, 0.0, 1.0, 1.0]).unwrap();
864
865 let embeddings =
867 Array2::from_shape_vec((3, 2), vec![0.1, 0.1, 0.9, 0.9, 5.0, 5.0]).unwrap();
868
869 let outliers = find_outliers(&embeddings, ¢roids, 1.0);
871
872 assert_eq!(outliers.len(), 1);
874 assert_eq!(outliers[0], 2);
875 }
876
877 #[test]
878 fn test_buffer_roundtrip() {
879 use tempfile::TempDir;
880
881 let dir = TempDir::new().unwrap();
882
883 let embeddings = vec![
885 Array2::from_shape_vec((3, 4), (0..12).map(|x| x as f32).collect()).unwrap(),
886 Array2::from_shape_vec((2, 4), (12..20).map(|x| x as f32).collect()).unwrap(),
887 Array2::from_shape_vec((5, 4), (20..40).map(|x| x as f32).collect()).unwrap(),
888 ];
889
890 save_buffer(dir.path(), &embeddings).unwrap();
892
893 let loaded = load_buffer(dir.path()).unwrap();
895
896 assert_eq!(loaded.len(), 3, "Should have 3 documents, not 1");
897 assert_eq!(loaded[0].nrows(), 3, "First doc should have 3 rows");
898 assert_eq!(loaded[1].nrows(), 2, "Second doc should have 2 rows");
899 assert_eq!(loaded[2].nrows(), 5, "Third doc should have 5 rows");
900
901 assert_eq!(loaded[0], embeddings[0]);
903 assert_eq!(loaded[1], embeddings[1]);
904 assert_eq!(loaded[2], embeddings[2]);
905 }
906
907 #[test]
908 fn test_buffer_info_matches_buffer_len() {
909 use tempfile::TempDir;
910
911 let dir = TempDir::new().unwrap();
912
913 let embeddings: Vec<Array2<f32>> = (0..5)
915 .map(|i| {
916 let rows = i + 2; Array2::from_shape_fn((rows, 4), |(r, c)| (r * 4 + c) as f32)
918 })
919 .collect();
920
921 save_buffer(dir.path(), &embeddings).unwrap();
922
923 let info_count = load_buffer_info(dir.path()).unwrap();
925 let loaded = load_buffer(dir.path()).unwrap();
926
927 assert_eq!(info_count, 5, "buffer_info should report 5 docs");
928 assert_eq!(
929 loaded.len(),
930 5,
931 "load_buffer should return 5 docs to match buffer_info"
932 );
933 }
934}