1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
use super::{ functionify, split_hm, stitch_hm };
use super::linalg::{ NxN, mat_vec_mul };
use meval::{ eval_str_with_context, Context };
use std::collections::HashMap;
/// Effectively an `f64`, but with an optional domain that the value must be on.
#[derive(Clone)]
#[derive(Debug)]
pub struct Variable {
value: f64,
domain: Option<[f64; 2]>
}
impl Variable {
/// Instantiates a new `Variable` struct with a specified value and domain.
pub fn new(value: f64, domain:Option<[f64; 2]>) -> Variable {
Variable {
value,
domain,
}
}
/// Allows the ability to mutate `self.value` if the new value is on `self.domain`.
pub fn change(&mut self, qty: f64) {
match self.domain {
Some(bounds) => {
if bounds[0] < qty && qty < bounds[1] {
self.value = qty;
} else if bounds[0] > qty { // if qty is o.o.b., then move self.value to the bound
self.value = bounds[0];
} else {
self.value = bounds[1];
}
}
None => {
// This comment is here exclusively to commemorate the STUPIDEST bug I have ever written:
// self.value += qty; <- note how the variable's value is increased instead of changed
// ~~ if no domain is specified.
self.value = qty;
}
}
}
/// Allows the ability to mutate `self.value` by adding `qty` to it if the sum of `self.value` and `qty` is on `self.domain`.
pub fn step(&mut self, qty: f64) {
match self.domain {
Some(bounds) => {
if bounds[0] < self.value + qty && self.value + qty < bounds[1] {
self.value += qty;
} else if bounds[0] > self.value + qty { // if qty is o.o.b., then move self.value to the bound
self.value = bounds[0];
} else {
self.value = bounds[1];
}
}
None => {
self.value += qty; // IT'S. THIS. LINE. EVERY. GODDAMN. TIME.
}
}
}
/// Returns `self.value` as `f64`.
pub fn as_f64(&self) -> f64 {
self.value
}
}
/// A result from the Newton-Raphson Solver that can be valid, valid with warnings, or erroneous.
pub enum SolverResult<T> {
Ok(T),
Warn(T),
Err
}
impl <'a, T>SolverResult<T> {
/// Returns the contained value, consuming the `self` value in the process. If the enum is a `SolverResult::Err`, this method panics.
pub fn unwrap(self) -> T {
match self {
SolverResult::Ok(t) => t,
SolverResult::Warn(t) => t,
SolverResult::Err => panic!()
}
}
}
/// Returns the derivative of a function at a point.
pub fn d_dx(mut func: impl FnMut(f64) -> f64, x: f64) -> f64 {
let dx = 1e-7;
( func(x + dx) - func(x) ) / dx
}
/// Solves a single equation for a single unknown value.
/// `mv_newton_raphson` can also be used for this scenario, but this
/// function is more lightweight and reasonable choice.
/// # Example
/// ```
/// use nexsys_core::mvcalc::*;
///
/// let my_eqn = "x^2 - 1";
/// let my_guess = ("x", Variable::new(-1.0, Some([-10.0, 0.0])));
///
/// let root = newton_raphson(my_eqn, my_guess, 0.001, 500).unwrap();
///
/// assert_eq!(root.1.as_f64(), -1.0)
/// ```
pub fn newton_raphson<'a>(
equation: &'a str,
guess: (&'a str, Variable),
tolerance: f64,
max_iterations: i32,
) -> SolverResult<(&'a str, Variable)> {
let mut xi = guess.1;
let mut ctx = Context::new();
// Lord, forgive me for what I am about to do...
let mut f = |x:f64| eval_str_with_context(equation, ctx.var(guess.0, x))
.expect("ERR: Failed to evaluate equation!").abs();
let mut count = 0;
while &f(xi.as_f64()) > &tolerance {
let mut roc = d_dx(&mut f, xi.as_f64());
if roc == 0.0 { roc = f64::MIN_POSITIVE } // Avoid crash
xi.step( -&f(xi.as_f64()) / roc );
count += 1;
if count > max_iterations {
return SolverResult::Warn((guess.0, xi))
}
}
SolverResult::Ok((guess.0, xi))
}
/// Returns the partial derivative of a function w.r.t. the `target` variable.
/// # Example
/// ```
/// use nexsys_core::mvcalc::partial_d_dx;
/// use nexsys_core::mvcalc::Variable;
/// use std::collections::HashMap;
/// let expr = "x^2 + y - z";
///
/// let X = HashMap::from([
/// ("x", Variable::new(1_f64, None)),
/// ("y", Variable::new(1_f64, None)),
/// ("z", Variable::new(1_f64, None))
/// ]);
///
/// let dFdx = partial_d_dx(expr, &X, "x");
/// assert_eq!(dFdx.round(), 2_f64);
/// ```
pub fn partial_d_dx<'a>(
expr: &str,
guess: &HashMap<&'a str, Variable>,
target: &'a str
) -> f64 {
// copy the guess vector
let mut temp = guess.clone();
// create an actual function from the given expression
let func = functionify(expr);
// create a partial function of the target variable
let partial = move |x:f64| -> f64 {
if let Some(v) = temp.get_mut(target) {
v.change(x);
}
func(&temp)
};
// take the derivative of the partial function
d_dx(partial, guess[target].as_f64())
}
/// Returns the (numerical) `NxN` Jacobian matrix of a given system of equations at the vector given by `guess`.
///
/// Note that the resulting matrix's columns will be in a random order, so extra care is needed to identify which
/// variable occupies which column by checking the ordering of `self.vars`.
/// # Example
/// ```
/// use nexsys_core::mvcalc::{ jacobian, Variable };
/// use std::collections::HashMap;
///
/// let my_sys = vec![
/// "x^2 + y",
/// "y - x"
/// ];
/// let guess = HashMap::from([
/// ("x", Variable::new(1.0, None)),
/// ("y", Variable::new(1.0, None))
/// ]);
///
/// let j = jacobian(&my_sys, &guess);
///
/// // j.to_vec() will return roughly:
/// // vec![
/// // vec![2.0, -1.0],
/// // vec![1.0, 1.0]
/// // ];
/// ```
pub fn jacobian<'a>(system: &Vec<&str>, guess: &HashMap<&str, Variable>) -> NxN {
if system.len() != guess.keys().len() {
panic!("ERR: System is not properly constrained!") // guard clause against invalid problems
}
let size = system.len();
let mut mat = Vec::new();
let vec = split_hm(guess.clone());
for c in 0..size {
let col = Vec::from_iter(
system.iter().map(
|i| partial_d_dx(i, guess, vec.0[c])
)
);
mat.push(col);
};
NxN::from_cols( size, mat, Some(vec.0) )
}
/// Performs one iteration of Newton's method for a system of equations, returning the next guess vector.
fn newton_iteration<'a>(system: &Vec<&str>, mut guess: HashMap<&'a str, Variable>) -> Result<HashMap<&'a str, Variable>, ()> {
let mut j = jacobian(system, &guess);
// println!("JACOBIAN: \n{:#?}", &j);
let inv_result = j.invert();
if let Err(()) = inv_result {
return Err(()) // Return an error if the matrix is non-invertible
}
let fx = Vec::from_iter(
system.iter().map(
|i| functionify(i)(&guess)
)
);
let x_n = stitch_hm(
j.vars.clone().unwrap(),
mat_vec_mul(j, fx)
);
// println!("CHANGE: \n{:#?}", x_n);
for v in &mut guess {
v.1.step(-x_n[&v.0.to_string()])
}
// println!("GUESS VECTOR: \n{:#?}", guess);
Ok(guess)
}
/// Attempts to solve the equations passed to `system` via the Newton-Raphson method.
/// # Example
/// ```
/// use std::collections::HashMap;
/// use nexsys_core::mvcalc::*;
///
/// let my_sys = vec!["x^2 + y", "y - x"];
/// let guess = HashMap::from([
/// ("x", Variable::new(1.0, None)),
/// ("y", Variable::new(1.0, None))
/// ]);
/// let ans = mv_newton_raphson(my_sys, guess, 0.001, 500).unwrap();
///
/// assert_eq!(ans["x"].as_f64().round(), 0.0)
/// ```
pub fn mv_newton_raphson<'a>(
system: Vec<&str>,
mut guess: HashMap<&'a str, Variable>,
tolerance: f64,
max_iterations: i32
) -> SolverResult<HashMap<&'a str, Variable>> {
let error = |guess: &HashMap<&str, Variable>| -> f64 {
system.iter().map(
|i| {
let mut ctx = Context::new();
for j in guess {
ctx.var(*j.0, j.1.as_f64());
}
let exp = i.replace("=", "-");
let error_msg = format!("Correctness function failed to evaluate the system string: {}", &exp);
eval_str_with_context(&exp, ctx)
.expect(&error_msg)
.abs()
}
).sum()
};
let mut count = 0;
loop {
// println!("ITERATION # {}", count);
let res = newton_iteration(&system, guess);
if let Err(()) = res {
return SolverResult::Err;
}
guess = res.unwrap();
let e = error(&guess);
if e < tolerance { // Solution is valid and acceptable
return SolverResult::Ok(guess)
} else if count > max_iterations { // Solution is valid, but timed out
guess.insert("__error__", Variable::new(e, None));
return SolverResult::Warn(guess)
}
count += 1;
}
}