1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
use async_process::Command;
use futures::channel::mpsc;
use futures::io::BufReader;
use futures::prelude::*;
use netsim_embed_core::*;
pub use netsim_embed_core::{Ipv4Range, Wire};
pub use netsim_embed_machine::namespace;
use netsim_embed_machine::*;
use netsim_embed_nat::*;
use netsim_embed_router::*;
pub use pnet_packet::*;
use std::io::Write;
use std::net::Ipv4Addr;
use std::process::Stdio;

pub fn run<F>(f: F)
where
    F: Future<Output = ()> + Send + 'static,
{
    env_logger::init();
    namespace::unshare_user().unwrap();
    async_global_executor::block_on(f);
}

#[derive(Debug)]
pub struct Machine<C, E> {
    addr: Ipv4Addr,
    tx: mpsc::UnboundedSender<C>,
    rx: mpsc::UnboundedReceiver<E>,
}

impl<C: Send + 'static, E: Send + 'static> Machine<C, E> {
    pub fn addr(&self) -> Ipv4Addr {
        self.addr
    }

    pub async fn send(&mut self, cmd: C) {
        self.tx.send(cmd).await.unwrap();
    }

    pub async fn recv(&mut self) -> Option<E> {
        self.rx.next().await
    }
}

#[derive(Debug)]
pub struct Network<C, E> {
    range: Ipv4Range,
    machines: Vec<Machine<C, E>>,
    networks: Vec<Network<C, E>>,
}

impl<C: Send + 'static, E: Send + 'static> Network<C, E> {
    pub fn range(&self) -> Ipv4Range {
        self.range
    }

    pub fn subnet(&mut self, i: usize) -> &mut Network<C, E> {
        self.networks.get_mut(i).unwrap()
    }

    pub fn subnets(&self) -> &[Network<C, E>] {
        &self.networks
    }

    pub fn subnets_mut(&mut self) -> &mut [Network<C, E>] {
        &mut self.networks
    }

    pub fn machine(&mut self, i: usize) -> &mut Machine<C, E> {
        self.machines.get_mut(i).unwrap()
    }

    pub fn machines(&self) -> &[Machine<C, E>] {
        &self.machines
    }

    pub fn machines_mut(&mut self) -> &mut [Machine<C, E>] {
        &mut self.machines
    }
}

#[derive(Clone, Copy, Debug)]
pub struct NatConfig {
    pub hair_pinning: bool,
    pub symmetric: bool,
    pub blacklist_unrecognized_addrs: bool,
    pub restrict_endpoints: bool,
}

impl Default for NatConfig {
    fn default() -> Self {
        Self {
            hair_pinning: false,
            symmetric: false,
            blacklist_unrecognized_addrs: false,
            restrict_endpoints: false,
        }
    }
}

#[derive(Debug)]
pub struct NetworkBuilder<C, E> {
    range: Ipv4Range,
    router: Ipv4Router,
    machines: Vec<Machine<C, E>>,
    networks: Vec<Network<C, E>>,
}

impl<C: Send + 'static, E: Send + 'static> NetworkBuilder<C, E> {
    pub fn new(range: Ipv4Range) -> Self {
        let router = Ipv4Router::new(range.gateway_addr());
        Self {
            range,
            router,
            machines: Default::default(),
            networks: Default::default(),
        }
    }

    pub fn spawn_machine<B, F>(&mut self, config: Wire, builder: B) -> Ipv4Addr
    where
        B: FnOnce(mpsc::UnboundedReceiver<C>, mpsc::UnboundedSender<E>) -> F + Send + 'static,
        F: Future<Output = ()> + Send + 'static,
    {
        let (iface_a, iface_b) = config.spawn();
        let (cmd_tx, cmd_rx) = mpsc::unbounded();
        let (event_tx, event_rx) = mpsc::unbounded();
        let addr = self.range.random_client_addr();
        let mask = self.range.netmask_prefix_length();
        async_global_executor::spawn(async_global_executor::spawn_blocking(move || {
            let join = machine(addr, mask, iface_b, builder(cmd_rx, event_tx));
            join.join().unwrap();
        }))
        .detach();
        let machine = Machine {
            addr,
            tx: cmd_tx,
            rx: event_rx,
        };
        self.machines.push(machine);
        self.router.add_connection(iface_a, vec![addr.into()]);
        addr
    }

    pub fn spawn_machine_with_command(&mut self, config: Wire, mut command: Command) -> Ipv4Addr
    where
        C: std::fmt::Display,
        E: std::str::FromStr,
        E::Err: std::fmt::Debug + Send,
    {
        self.spawn_machine(
            config,
            |mut cmd: mpsc::UnboundedReceiver<C>, event: mpsc::UnboundedSender<E>| async move {
                command.stdin(Stdio::piped()).stdout(Stdio::piped());
                let mut child = command.spawn().unwrap();
                let mut stdout = BufReader::new(child.stdout.take().unwrap()).lines().fuse();
                let mut stdin = child.stdin.unwrap();
                let mut buf = Vec::with_capacity(4096);
                loop {
                    futures::select! {
                        cmd = cmd.next() => {
                            if let Some(cmd) = cmd {
                                buf.clear();
                                tracing::trace!("{}", cmd);
                                writeln!(buf, "{}", cmd).unwrap();
                                stdin.write_all(&buf).await.unwrap();
                            } else {
                                break;
                            }
                        }
                        ev = stdout.next() => {
                            if let Some(ev) = ev {
                                let ev = ev.unwrap();
                                if ev.starts_with('<') {
                                    event.unbounded_send(ev.parse().unwrap()).unwrap();
                                } else {
                                    println!("{}", ev);
                                }
                            } else {
                                break;
                            }
                        }
                    }
                }
            },
        )
    }

    pub fn spawn_network(&mut self, config: Option<NatConfig>, mut builder: NetworkBuilder<C, E>) {
        let (net_a, net_b) = wire();
        if let Some(config) = config {
            builder
                .router
                .add_connection(net_b, vec![Ipv4Range::global().into()]);
            let (nat_a, nat_b) = wire();
            let nat_addr = self.range.random_client_addr();
            let mut nat = Ipv4Nat::new(nat_b, net_a, nat_addr, builder.range);
            nat.set_hair_pinning(config.hair_pinning);
            nat.set_symmetric(config.symmetric);
            nat.set_blacklist_unrecognized_addrs(config.blacklist_unrecognized_addrs);
            nat.set_restrict_endpoints(config.restrict_endpoints);
            async_global_executor::spawn(nat).detach();
            self.router.add_connection(nat_a, vec![nat_addr.into()]);
        } else {
            builder
                .router
                .add_connection(net_b, vec![Ipv4Range::global().into()]);
            self.router
                .add_connection(net_a, vec![builder.range.into()]);
        }
        let network = builder.spawn();
        self.networks.push(network);
    }

    pub fn spawn(self) -> Network<C, E> {
        let Self {
            range,
            router,
            machines,
            networks,
        } = self;
        async_global_executor::spawn(router).detach();
        Network {
            range,
            machines,
            networks,
        }
    }
}