1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
use netsblox_vm::real_time::*;
use netsblox_vm::std_system::*;
use netsblox_vm::std_util::*;
use netsblox_vm::bytecode::*;
use netsblox_vm::process::*;
use netsblox_vm::runtime::*;
use netsblox_vm::project::*;
use netsblox_vm::gc::*;
use netsblox_vm::ast;
use netsblox_vm::compact_str::CompactString;

use std::io::Read;
use std::time::Duration;
use std::sync::Arc;
use std::rc::Rc;

// -----------------------------------------------------------------

const BASE_URL: &'static str = "https://cloud.netsblox.org";

const CLOCK_INTERVAL: Duration = Duration::from_millis(10);
const COLLECT_INTERVAL: Duration = Duration::from_secs(60);

const YIELDS_BEFORE_SLEEP: usize = 64;
const IDLE_SLEEP_TIME: Duration = Duration::from_millis(1);

// -----------------------------------------------------------------

#[derive(Debug, Clone, Copy, PartialEq, Eq)]
enum NativeType {} // type enum for a NativeValue - we don't have any native values we want to expose, so just use an empty enum

#[derive(Debug)]
enum NativeValue {} // enum for native values that are exposed to the vm - we don't have any we want to expose, so just use an empty enum
impl GetType for NativeValue {
    type Output = NativeType;
    fn get_type(&self) -> Self::Output {
        unreachable!() // because we don't have any native values to get the type of
    }
}

struct EntityState; // a type to hold custom entity (sprite or stage) state - we don't have any, so just use a unit struct
impl From<EntityKind<'_, '_, C, StdSystem<C>>> for EntityState {
    fn from(_: EntityKind<'_, '_, C, StdSystem<C>>) -> Self {
        EntityState
    }
}

struct ProcessState; // a type to hold custom process (script) state - we don't have any, so just use a unit struct
impl From<ProcessKind<'_, '_, C, StdSystem<C>>> for ProcessState {
    fn from(_: ProcessKind<'_, '_, C, StdSystem<C>>) -> Self {
        ProcessState
    }
}

struct C; // a type to hold all of our custom type definitions for the vm to use
impl CustomTypes<StdSystem<C>> for C {
    type NativeValue = NativeValue; // a type to hold any native rust values exposed to the vm
    type Intermediate = SimpleValue; // a Send type that serves as an intermediate between vm gc values and normal rust

    type EntityState = EntityState; // a type to hold the custom state for an entity (sprite or stage)
    type ProcessState = ProcessState; // a type to hold the custom state for a process (script)

    // a function to convert intermediate values into native vm values
    fn from_intermediate<'gc>(mc: &Mutation<'gc>, value: Self::Intermediate) -> Value<'gc, C, StdSystem<C>> {
        Value::from_simple(mc, value)
    }
}

// our top-level gc arena - this will hold our gc-allocated project and everything it contains
#[derive(Collect)]
#[collect(no_drop)]
struct Env<'gc> {
                               proj: Gc<'gc, RefLock<Project<'gc, C, StdSystem<C>>>>,
    #[collect(require_static)] locs: Locations, // bytecode locations info for generating error traces
}
type EnvArena = Arena<Rootable![Env<'_>]>;

// converts a netsblox xml project containing a single role into a new gc environment object containing a running project
fn get_running_project(xml: &str, system: Rc<StdSystem<C>>) -> EnvArena {
    EnvArena::new(|mc| {
        let parser = ast::Parser::default();
        let ast = parser.parse(xml).unwrap();
        assert_eq!(ast.roles.len(), 1); // this should be handled more elegantly in practice - for the sake of this example, we only allow one role

        let (bytecode, init_info, locs, _) = ByteCode::compile(&ast.roles[0]).unwrap();

        let mut proj = Project::from_init(mc, &init_info, Rc::new(bytecode), Settings::default(), system);
        proj.input(mc, Input::Start); // this is equivalent to clicking the green flag button

        Env { proj: Gc::new(mc, RefLock::new(proj)), locs }
    })
}

fn main() {
    // read in an xml file whose path is given as a command line argument
    let args = std::env::args().collect::<Vec<_>>();
    if args.len() != 2 {
        panic!("usage: {} [xml file]", &args[0]);
    }
    let mut xml = String::new();
    std::fs::File::open(&args[1]).expect("failed to open file").read_to_string(&mut xml).expect("failed to read file");

    // create a new shared clock and start a thread that updates it at our desired interval
    let clock = Arc::new(Clock::new(UtcOffset::UTC, Some(Precision::Medium)));
    let clock_clone = clock.clone();
    std::thread::spawn(move || loop {
        std::thread::sleep(CLOCK_INTERVAL);
        clock_clone.update();
    });

    // create a custom config for the system - in this simple example we just implement the say/think blocks to print to stdout
    let config = Config::<C, StdSystem<C>> {
        request: None,
        command: Some(Rc::new(|_mc, key, command, _proc| match command {
            Command::Print { style: _, value } => {
                if let Some(value) = value {
                    println!("{value:?}");
                }
                key.complete(Ok(())); // any request that you handle must be completed - otherwise the calling process will hang forever
                CommandStatus::Handled
            }
            _ => CommandStatus::UseDefault { key, command }, // anything you don't handle should return the key and command to invoke the default behavior instead
        })),
    };

    // initialize our system with all the info we've put together
    let system = Rc::new(StdSystem::new_sync(CompactString::new(BASE_URL), None, config, clock.clone()));
    let mut env = get_running_project(&xml, system);

    // begin running the code - these are some helpers to make things more efficient in terms of memory and cpu resources
    let mut idle_sleeper = IdleAction::new(YIELDS_BEFORE_SLEEP, Box::new(|| std::thread::sleep(IDLE_SLEEP_TIME)));
    let mut next_collect = clock.read(Precision::Medium) + COLLECT_INTERVAL;
    loop {
        env.mutate(|mc, env| {
            let mut proj = env.proj.borrow_mut(mc);
            for _ in 0..1024 {
                // step the virtual machine forward by one bytecode instruction
                let res = proj.step(mc);
                if let ProjectStep::Error { error, proc } = &res {
                    // if we get an error, we can generate an error summary including a stack trace - here we just print out the result
                    let trace = ErrorSummary::extract(error, proc, &env.locs);
                    println!("error: {error:?}\ntrace: {trace:?}");
                }
                // this takes care of performing thread sleep if we get a bunch of no-ops from proj.step back to back
                idle_sleeper.consume(&res);
            }
        });
        // if it's time for us to do garbage collection, do it and reset the next collection time
        if clock.read(Precision::Low) >= next_collect {
            env.collect_all();
            next_collect = clock.read(Precision::Medium) + COLLECT_INTERVAL;
        }
    }
}