Crate netflow_parser

Crate netflow_parser 

Source
Expand description

§netflow_parser

A Netflow Parser library for Cisco V5, V7, V9, and IPFIX written in Rust. Supports chaining of multiple versions in the same stream.

⚠️ Breaking Changes in v0.7.0: The Template TTL API has been simplified to only support time-based expiration. Packet-based and combined TTL modes have been removed. See the RELEASES.md for the full migration guide.

§Quick Start

use netflow_parser::NetflowParser;
use netflow_parser::variable_versions::ttl::TtlConfig;
use std::time::Duration;

// Create a parser with custom configuration
let mut parser = NetflowParser::builder()
    .with_cache_size(2000)
    .with_ttl(TtlConfig::new(Duration::from_secs(7200)))
    .build()
    .expect("Failed to build parser");

// Parse packets
let buffer = [0, 5, 0, 1, 3, 0, 4, 0, 5, 0, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7];
let packets = parser.parse_bytes(&buffer);

§Using Default Configuration

use netflow_parser::{NetflowParser, NetflowPacket};

let v5_packet = [0, 5, 0, 1, 3, 0, 4, 0, 5, 0, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7,];
match NetflowParser::default().parse_bytes(&v5_packet).first() {
    Some(NetflowPacket::V5(v5)) => assert_eq!(v5.header.version, 5),
    Some(NetflowPacket::Error(e)) => println!("{:?}", e),
    _ => (),
}

§Want Serialization such as JSON?

Structures fully support serialization. Below is an example using the serde_json macro:

use serde_json::json;
use netflow_parser::NetflowParser;

let v5_packet = [0, 5, 0, 1, 3, 0, 4, 0, 5, 0, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7,];
println!("{}", json!(NetflowParser::default().parse_bytes(&v5_packet)).to_string());
[
  {
    "V5": {
      "header": {
        "count": 1,
        "engine_id": 7,
        "engine_type": 6,
        "flow_sequence": 33752069,
        "sampling_interval": 2057,
        "sys_up_time": { "nanos": 672000000, "secs": 50332 },
        "unix_nsecs": 134807553,
        "unix_secs": 83887623,
        "version": 5
      },
      "sets": [
        {
          "d_octets": 66051,
          "d_pkts": 101124105,
          "dst_addr": "4.5.6.7",
          "dst_as": 515,
          "dst_mask": 5,
          "dst_port": 1029,
          "first": { "nanos": 87000000, "secs": 67438 },
          "input": 515,
          "last": { "nanos": 553000000, "secs": 134807 },
          "next_hop": "8.9.0.1",
          "output": 1029,
          "pad1": 6,
          "pad2": 1543,
          "protocol_number": 8,
          "protocol_type": "Egp",
          "src_addr": "0.1.2.3",
          "src_as": 1,
          "src_mask": 4,
          "src_port": 515,
          "tcp_flags": 7,
          "tos": 9
        }
      ]
    }
  }
]

§Filtering for a Specific Version

use netflow_parser::{NetflowParser, NetflowPacket};

let v5_packet = [0, 5, 0, 1, 3, 0, 4, 0, 5, 0, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7,];
let parsed = NetflowParser::default().parse_bytes(&v5_packet);

let v5_parsed: Vec<NetflowPacket> = parsed.into_iter().filter(|p| p.is_v5()).collect();

§Iterator API

For high-performance scenarios where you want to avoid allocating a Vec, you can use the iterator API to process packets one-by-one as they’re parsed:

use netflow_parser::{NetflowParser, NetflowPacket};

let mut parser = NetflowParser::default();

// Process packets without collecting into a Vec
for packet in parser.iter_packets(&buffer) {
    match packet {
        NetflowPacket::V5(v5) => {
            // Process V5 packet
            println!("V5 packet from {}", v5.header.version);
        }
        NetflowPacket::V9(v9) => {
            // Process V9 packet
            for flowset in &v9.flowsets {
                // Handle flowsets
            }
        }
        NetflowPacket::IPFix(ipfix) => {
            // Process IPFIX packet
        }
        NetflowPacket::Error(e) => {
            eprintln!("Parse error: {:?}", e);
        }
        _ => {}
    }
}

The iterator provides access to unconsumed bytes for advanced use cases:

use netflow_parser::NetflowParser;

let mut parser = NetflowParser::default();
let mut iter = parser.iter_packets(&buffer);

while let Some(packet) = iter.next() {
    // Process packet
}

// Check if all bytes were consumed
if !iter.is_complete() {
    println!("Warning: {} bytes remain unconsumed", iter.remaining().len());
}

§Benefits of Iterator API

  • Zero allocation: Packets are yielded one-by-one without allocating a Vec
  • Memory efficient: Ideal for processing large batches or continuous streams
  • Lazy evaluation: Only parses packets as you consume them
  • Template caching preserved: V9/IPFIX template state is maintained across iterations
  • Composable: Works with standard Rust iterator methods (.filter(), .map(), .take(), etc.)
  • Buffer inspection: Access unconsumed bytes via .remaining() and check completion with .is_complete()

§Iterator Examples

// Count V5 packets without collecting
let count = parser.iter_packets(&buffer)
    .filter(|p| p.is_v5())
    .count();

// Process only the first 10 packets
for packet in parser.iter_packets(&buffer).take(10) {
    // Handle packet
}

// Collect only if needed (equivalent to parse_bytes())
let packets: Vec<_> = parser.iter_packets(&buffer).collect();

// Check unconsumed bytes (useful for mixed protocol streams)
let mut iter = parser.iter_packets(&buffer);
for packet in &mut iter {
    // Process packet
}
if !iter.is_complete() {
    let remaining = iter.remaining();
    // Handle non-netflow data at end of buffer
}

§Parsing Out Unneeded Versions

If you only care about a specific version or versions you can specify allowed_versions:

use netflow_parser::{NetflowParser, NetflowPacket};

let v5_packet = [0, 5, 0, 1, 3, 0, 4, 0, 5, 0, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7,];
let mut parser = NetflowParser::default();
parser.allowed_versions = [7, 9].into();
let parsed = parser.parse_bytes(&v5_packet);

This code will return an empty Vec as version 5 is not allowed.

§Error Handling Configuration

To prevent memory exhaustion from malformed packets, the parser limits the size of error buffer samples. By default, only the first 256 bytes of unparseable data are stored in error messages. You can customize this limit for all parsers:

use netflow_parser::NetflowParser;

let mut parser = NetflowParser::default();

// Configure maximum error buffer size for the main parser (default: 256 bytes)
// This applies to generic parsing errors
parser.max_error_sample_size = 512;

// Configure maximum error buffer size for V9 (default: 256 bytes)
parser.v9_parser.max_error_sample_size = 512;

// Configure maximum error buffer size for IPFIX (default: 256 bytes)
parser.ipfix_parser.max_error_sample_size = 512;

let parsed = parser.parse_bytes(&some_packet);

This setting helps prevent memory exhaustion when processing malformed or malicious packets while still providing enough context for debugging.

§Netflow Common

We have included a NetflowCommon and NetflowCommonFlowSet structure. This will allow you to use common fields without unpacking values from specific versions. If the packet flow does not have the matching field it will simply be left as None.

§NetflowCommon and NetflowCommonFlowSet Struct:

use std::net::IpAddr;
use netflow_parser::protocol::ProtocolTypes;

#[derive(Debug, Default)]
pub struct NetflowCommon {
    pub version: u16,
    pub timestamp: u32,
    pub flowsets: Vec<NetflowCommonFlowSet>,
}

#[derive(Debug, Default)]
struct NetflowCommonFlowSet {
    src_addr: Option<IpAddr>,
    dst_addr: Option<IpAddr>,
    src_port: Option<u16>,
    dst_port: Option<u16>,
    protocol_number: Option<u8>,
    protocol_type: Option<ProtocolTypes>,
    first_seen: Option<u32>,
    last_seen: Option<u32>,
    src_mac: Option<String>,
    dst_mac: Option<String>,
}

§Converting NetflowPacket to NetflowCommon

use netflow_parser::{NetflowParser, NetflowPacket};

let v5_packet = [0, 5, 0, 1, 3, 0, 4, 0, 5, 0, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3,
    4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1,
    2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7];
let netflow_common = NetflowParser::default()
                     .parse_bytes(&v5_packet)
                     .first()
                     .unwrap()
                     .as_netflow_common()
                     .unwrap();

for common_flow in netflow_common.flowsets.iter() {
    println!("Src Addr: {} Dst Addr: {}", common_flow.src_addr.unwrap(), common_flow.dst_addr.unwrap());
}

§Flattened flowsets

To gather all flowsets from all packets into a flattened vector:

use netflow_parser::NetflowParser;

let flowsets = NetflowParser::default().parse_bytes_as_netflow_common_flowsets(&v5_packet);

§Custom Field Mappings for V9 and IPFIX

By default, NetflowCommon maps standard IANA fields to the common structure. However, you can customize which fields are used for V9 and IPFIX packets using configuration structs. This is useful when:

  • You want to prefer IPv6 addresses over IPv4
  • Your vendor uses non-standard field mappings
  • You need to extract data from vendor-specific enterprise fields
§V9 Custom Field Mapping
use netflow_parser::netflow_common::{NetflowCommon, V9FieldMappingConfig};
use netflow_parser::variable_versions::v9_lookup::V9Field;

// Create a custom configuration that prefers IPv6 addresses
let mut config = V9FieldMappingConfig::default();
config.src_addr.primary = V9Field::Ipv6SrcAddr;
config.src_addr.fallback = Some(V9Field::Ipv4SrcAddr);
config.dst_addr.primary = V9Field::Ipv6DstAddr;
config.dst_addr.fallback = Some(V9Field::Ipv4DstAddr);

// Use with a parsed V9 packet
// let common = NetflowCommon::from_v9_with_config(&v9_packet, &config);
§IPFIX Custom Field Mapping
use netflow_parser::netflow_common::{NetflowCommon, IPFixFieldMappingConfig};
use netflow_parser::variable_versions::ipfix_lookup::{IPFixField, IANAIPFixField};

// Create a custom configuration that prefers IPv6 addresses
let mut config = IPFixFieldMappingConfig::default();
config.src_addr.primary = IPFixField::IANA(IANAIPFixField::SourceIpv6address);
config.src_addr.fallback = Some(IPFixField::IANA(IANAIPFixField::SourceIpv4address));
config.dst_addr.primary = IPFixField::IANA(IANAIPFixField::DestinationIpv6address);
config.dst_addr.fallback = Some(IPFixField::IANA(IANAIPFixField::DestinationIpv4address));

// Use with a parsed IPFIX packet
// let common = NetflowCommon::from_ipfix_with_config(&ipfix_packet, &config);
§Available Configuration Fields

Both V9FieldMappingConfig and IPFixFieldMappingConfig support configuring:

FieldDescriptionDefault V9 FieldDefault IPFIX Field
src_addrSource IP addressIpv4SrcAddr (fallback: Ipv6SrcAddr)SourceIpv4address (fallback: SourceIpv6address)
dst_addrDestination IP addressIpv4DstAddr (fallback: Ipv6DstAddr)DestinationIpv4address (fallback: DestinationIpv6address)
src_portSource portL4SrcPortSourceTransportPort
dst_portDestination portL4DstPortDestinationTransportPort
protocolProtocol numberProtocolProtocolIdentifier
first_seenFlow start timeFirstSwitchedFlowStartSysUpTime
last_seenFlow end timeLastSwitchedFlowEndSysUpTime
src_macSource MAC addressInSrcMacSourceMacaddress
dst_macDestination MAC addressInDstMacDestinationMacaddress

Each field mapping has a primary field (always checked first) and an optional fallback field (used if primary is not present in the flow record).

§Re-Exporting Flows

Parsed V5, V7, V9, and IPFIX packets can be re-exported back into bytes.

V9/IPFIX Padding Behavior:

  • For parsed packets: Original padding is preserved exactly for byte-perfect round-trips
  • For manually created packets: Padding is automatically calculated to align FlowSets to 4-byte boundaries

Creating Data Structs: For convenience, use Data::new() and OptionsData::new() to create data structures without manually specifying padding:

use netflow_parser::variable_versions::ipfix::Data;

// Padding is automatically set to empty vec and calculated during export
let data = Data::new(vec![vec![
    (field1, value1),
    (field2, value2),
]]);

See examples/manual_ipfix_creation.rs for a complete example of creating IPFIX packets from scratch.

use netflow_parser::{NetflowParser, NetflowPacket};

let packet = [
    0, 5, 0, 1, 3, 0, 4, 0, 5, 0, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3,
    4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1,
    2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7,
];
if let NetflowPacket::V5(v5) = NetflowParser::default()
    .parse_bytes(&packet)
    .first()
    .unwrap()
{
    assert_eq!(v5.to_be_bytes(), packet);
}

§Template Cache Configuration

V9 and IPFIX parsers use LRU (Least Recently Used) caching to store templates with a configurable size limit. This prevents memory exhaustion from template flooding attacks while maintaining good performance for legitimate traffic.

§Default Behavior

By default, parsers cache up to 1000 templates:

use netflow_parser::NetflowParser;

// Uses default cache size of 1000 templates per parser
let parser = NetflowParser::default();

§Custom Cache Size

Use the builder pattern to configure cache sizes:

use netflow_parser::NetflowParser;

// Configure both V9 and IPFIX with the same cache size
let parser = NetflowParser::builder()
    .with_cache_size(2000)
    .build()
    .expect("Failed to build parser");

// Configure V9 and IPFIX independently
let parser = NetflowParser::builder()
    .with_v9_cache_size(1000)
    .with_ipfix_cache_size(5000)
    .build()
    .expect("Failed to build parser");

§Cache Behavior

  • When the cache is full, the least recently used template is evicted
  • Templates are keyed by template ID (per source)
  • Each parser instance maintains its own template cache
  • For multi-source deployments, create separate parser instances per source

§Template TTL (Time-to-Live)

Optionally configure templates to expire after a time duration. This is useful for:

  • Handling exporters that reuse template IDs with different schemas
  • Forcing periodic template refresh from exporters
  • Testing template re-learning behavior

Note: TTL is disabled by default. Templates persist until LRU eviction unless explicitly configured.

§Configuration Examples
use netflow_parser::NetflowParser;
use netflow_parser::variable_versions::ttl::TtlConfig;
use std::time::Duration;

// Templates expire after 2 hours
let parser = NetflowParser::builder()
    .with_cache_size(1000)
    .with_ttl(TtlConfig::new(Duration::from_secs(2 * 3600)))
    .build()
    .unwrap();

// Using default TTL (2 hours)
let parser = NetflowParser::builder()
    .with_cache_size(1000)
    .with_ttl(TtlConfig::default())
    .build()
    .unwrap();

// Different TTL for V9 and IPFIX
let parser = NetflowParser::builder()
    .with_v9_ttl(TtlConfig::new(Duration::from_secs(3600)))
    .with_ipfix_ttl(TtlConfig::new(Duration::from_secs(2 * 3600)))
    .build()
    .unwrap();

§V9/IPFIX Notes

Parse the data (&[u8]) like any other version. The parser (NetflowParser) caches parsed templates using LRU eviction, so you can send header/data flowset combos and it will use the cached templates. Templates are automatically cached and evicted when the cache limit is reached.

Template Cache Introspection: Use the introspection methods to inspect template cache state without affecting LRU ordering:

use netflow_parser::NetflowParser;
let parser = NetflowParser::default();

// Get cache statistics
let stats = parser.v9_cache_stats();
println!("V9 cache: {}/{} templates", stats.current_size, stats.max_size);

// List all cached template IDs
let template_ids = parser.v9_template_ids();
println!("Cached templates: {:?}", template_ids);

// Check if a specific template exists (doesn't affect LRU)
if parser.has_v9_template(256) {
    println!("Template 256 is cached");
}

IPFIX Note: We only parse sequence number and domain id, it is up to you if you wish to validate it.

To access templates flowset of a processed V9/IPFix flowset you can find the flowsets attribute on the Parsed Record. In there you can find Templates, Option Templates, and Data Flowsets.

§Performance & Thread Safety

§Thread Safety

Parsers (NetflowParser, V9Parser, IPFixParser) are not thread-safe and should not be shared across threads without external synchronization. Each parser maintains internal state (template caches) that is modified during parsing.

Recommended pattern for multi-threaded applications:

  • Create one parser instance per thread
  • Each thread processes packets from a single router/source
  • See examples/netflow_udp_listener_multi_threaded.rs for implementation example

§Performance Optimizations

This library includes several performance optimizations:

  1. Single-pass field caching - NetflowCommon conversions use efficient single-pass lookups
  2. Minimal cloning - Template storage avoids unnecessary vector clones
  3. Optimized string processing - Single-pass filtering and prefix stripping
  4. Capacity pre-allocation - Vectors pre-allocate when sizes are known
  5. Bounded error buffers - Error handling limits memory consumption to prevent exhaustion

Best practices for optimal performance:

  • Reuse parser instances instead of creating new ones for each packet
  • Use iter_packets() instead of parse_bytes() when you don’t need all packets in a Vec
  • Use parse_bytes_as_netflow_common_flowsets() when you only need flow data
  • For V9/IPFIX, batch process packets from the same source to maximize template cache hits

§Features

  • parse_unknown_fields - When enabled fields not listed in this library will attempt to be parsed as a Vec of bytes and the field_number listed. When disabled an error is thrown when attempting to parse those fields. Enabled by default.
  • netflow_common - When enabled provides NetflowCommon and NetflowCommonFlowSet structures for working with common fields across different Netflow versions. Disabled by default.

§Included Examples

Examples have been included mainly for those who want to use this parser to read from a Socket and parse netflow. In those cases with V9/IPFix it is best to create a new parser for each router. There are both single threaded and multi-threaded examples in the examples directory.

Examples that listen on a specific port use 9995 by default, however netflow can be configurated to use a variety of URP ports:

  • 2055: The most widely recognized default for NetFlow.
  • 9995 / 9996: Popular alternatives, especially with Cisco devices.
  • 9025, 9026: Other recognized port options.
  • 6343: The default for sFlow, often used alongside NetFlow.
  • 4739: The default port for IPFIX (a NetFlow successor).

To run:

cargo run --example netflow_udp_listener_multi_threaded

cargo run --example netflow_udp_listener_single_threaded

cargo run --example netflow_udp_listener_tokio

cargo run --example netflow_pcap

cargo run --example manual_ipfix_creation

The pcap example also shows how to cache flows that have not yet discovered a template.

§Support My Work

If you find my work helpful, consider supporting me!

ko-fi

GitHub Sponsors

Modules§

protocol
static_versions
variable_versions
Variable-length NetFlow protocols (V9 and IPFIX).

Structs§

CacheStats
Statistics about template cache utilization.
NetflowPacketError
NetflowPacketIterator
Iterator that yields NetflowPacket items from a byte buffer without allocating a Vec. Maintains parser state for template caching (V9/IPFIX).
NetflowParser
Main parser for Netflow packets supporting V5, V7, V9, and IPFIX.
NetflowParserBuilder
Builder for configuring and constructing a NetflowParser.
PartialParse

Enums§

NetflowPacket
Enum of supported Netflow Versions
NetflowParseError
ParsedNetflow