Crate netflow_parser

Crate netflow_parser 

Source
Expand description

§netflow_parser

A Netflow Parser library for Cisco V5, V7, V9, and IPFIX written in Rust. Supports chaining of multiple versions in the same stream.

§Example

§V5

use netflow_parser::{NetflowParser, NetflowPacket};

let v5_packet = [0, 5, 0, 1, 3, 0, 4, 0, 5, 0, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7,];
match NetflowParser::default().parse_bytes(&v5_packet).first() {
    Some(NetflowPacket::V5(v5)) => assert_eq!(v5.header.version, 5),
    Some(NetflowPacket::Error(e)) => println!("{:?}", e),
    _ => (),
}

§Want Serialization such as JSON?

Structures fully support serialization. Below is an example using the serde_json macro:

use serde_json::json;
use netflow_parser::NetflowParser;

let v5_packet = [0, 5, 0, 1, 3, 0, 4, 0, 5, 0, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7,];
println!("{}", json!(NetflowParser::default().parse_bytes(&v5_packet)).to_string());
[
  {
    "V5": {
      "header": {
        "count": 1,
        "engine_id": 7,
        "engine_type": 6,
        "flow_sequence": 33752069,
        "sampling_interval": 2057,
        "sys_up_time": { "nanos": 672000000, "secs": 50332 },
        "unix_nsecs": 134807553,
        "unix_secs": 83887623,
        "version": 5
      },
      "sets": [
        {
          "d_octets": 66051,
          "d_pkts": 101124105,
          "dst_addr": "4.5.6.7",
          "dst_as": 515,
          "dst_mask": 5,
          "dst_port": 1029,
          "first": { "nanos": 87000000, "secs": 67438 },
          "input": 515,
          "last": { "nanos": 553000000, "secs": 134807 },
          "next_hop": "8.9.0.1",
          "output": 1029,
          "pad1": 6,
          "pad2": 1543,
          "protocol_number": 8,
          "protocol_type": "Egp",
          "src_addr": "0.1.2.3",
          "src_as": 1,
          "src_mask": 4,
          "src_port": 515,
          "tcp_flags": 7,
          "tos": 9
        }
      ]
    }
  }
]

§Filtering for a Specific Version

use netflow_parser::{NetflowParser, NetflowPacket};

let v5_packet = [0, 5, 0, 1, 3, 0, 4, 0, 5, 0, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7,];
let parsed = NetflowParser::default().parse_bytes(&v5_packet);

let v5_parsed: Vec<NetflowPacket> = parsed.into_iter().filter(|p| p.is_v5()).collect();

§Iterator API

For high-performance scenarios where you want to avoid allocating a Vec, you can use the iterator API to process packets one-by-one as they’re parsed:

use netflow_parser::{NetflowParser, NetflowPacket};

let mut parser = NetflowParser::default();

// Process packets without collecting into a Vec
for packet in parser.iter_packets(&buffer) {
    match packet {
        NetflowPacket::V5(v5) => {
            // Process V5 packet
            println!("V5 packet from {}", v5.header.version);
        }
        NetflowPacket::V9(v9) => {
            // Process V9 packet
            for flowset in &v9.flowsets {
                // Handle flowsets
            }
        }
        NetflowPacket::IPFix(ipfix) => {
            // Process IPFIX packet
        }
        NetflowPacket::Error(e) => {
            eprintln!("Parse error: {:?}", e);
        }
        _ => {}
    }
}

The iterator provides access to unconsumed bytes for advanced use cases:

use netflow_parser::NetflowParser;

let mut parser = NetflowParser::default();
let mut iter = parser.iter_packets(&buffer);

while let Some(packet) = iter.next() {
    // Process packet
}

// Check if all bytes were consumed
if !iter.is_complete() {
    println!("Warning: {} bytes remain unconsumed", iter.remaining().len());
}

§Benefits of Iterator API

  • Zero allocation: Packets are yielded one-by-one without allocating a Vec
  • Memory efficient: Ideal for processing large batches or continuous streams
  • Lazy evaluation: Only parses packets as you consume them
  • Template caching preserved: V9/IPFIX template state is maintained across iterations
  • Composable: Works with standard Rust iterator methods (.filter(), .map(), .take(), etc.)
  • Buffer inspection: Access unconsumed bytes via .remaining() and check completion with .is_complete()

§Iterator Examples

// Count V5 packets without collecting
let count = parser.iter_packets(&buffer)
    .filter(|p| p.is_v5())
    .count();

// Process only the first 10 packets
for packet in parser.iter_packets(&buffer).take(10) {
    // Handle packet
}

// Collect only if needed (equivalent to parse_bytes())
let packets: Vec<_> = parser.iter_packets(&buffer).collect();

// Check unconsumed bytes (useful for mixed protocol streams)
let mut iter = parser.iter_packets(&buffer);
for packet in &mut iter {
    // Process packet
}
if !iter.is_complete() {
    let remaining = iter.remaining();
    // Handle non-netflow data at end of buffer
}

§Parsing Out Unneeded Versions

If you only care about a specific version or versions you can specify allowed_versions:

use netflow_parser::{NetflowParser, NetflowPacket};

let v5_packet = [0, 5, 0, 1, 3, 0, 4, 0, 5, 0, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7,];
let mut parser = NetflowParser::default();
parser.allowed_versions = [7, 9].into();
let parsed = parser.parse_bytes(&v5_packet);

This code will return an empty Vec as version 5 is not allowed.

§Error Handling Configuration

To prevent memory exhaustion from malformed packets, the parser limits the size of error buffer samples. By default, only the first 256 bytes of unparseable data are stored in error messages. You can customize this limit for all parsers:

use netflow_parser::NetflowParser;

let mut parser = NetflowParser::default();

// Configure maximum error buffer size for the main parser (default: 256 bytes)
// This applies to generic parsing errors
parser.max_error_sample_size = 512;

// Configure maximum error buffer size for V9 (default: 256 bytes)
parser.v9_parser.max_error_sample_size = 512;

// Configure maximum error buffer size for IPFIX (default: 256 bytes)
parser.ipfix_parser.max_error_sample_size = 512;

let parsed = parser.parse_bytes(&some_packet);

This setting helps prevent memory exhaustion when processing malformed or malicious packets while still providing enough context for debugging.

§Netflow Common

We have included a NetflowCommon and NetflowCommonFlowSet structure. This will allow you to use common fields without unpacking values from specific versions. If the packet flow does not have the matching field it will simply be left as None.

§NetflowCommon and NetflowCommonFlowSet Struct:

use std::net::IpAddr;
use netflow_parser::protocol::ProtocolTypes;

#[derive(Debug, Default)]
pub struct NetflowCommon {
    pub version: u16,
    pub timestamp: u32,
    pub flowsets: Vec<NetflowCommonFlowSet>,
}

#[derive(Debug, Default)]
struct NetflowCommonFlowSet {
    src_addr: Option<IpAddr>,
    dst_addr: Option<IpAddr>,
    src_port: Option<u16>,
    dst_port: Option<u16>,
    protocol_number: Option<u8>,
    protocol_type: Option<ProtocolTypes>,
    first_seen: Option<u32>,
    last_seen: Option<u32>,
    src_mac: Option<String>,
    dst_mac: Option<String>,
}

§Converting NetflowPacket to NetflowCommon

use netflow_parser::{NetflowParser, NetflowPacket};

let v5_packet = [0, 5, 0, 1, 3, 0, 4, 0, 5, 0, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3,
    4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1,
    2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7];
let netflow_common = NetflowParser::default()
                     .parse_bytes(&v5_packet)
                     .first()
                     .unwrap()
                     .as_netflow_common()
                     .unwrap();

for common_flow in netflow_common.flowsets.iter() {
    println!("Src Addr: {} Dst Addr: {}", common_flow.src_addr.unwrap(), common_flow.dst_addr.unwrap());
}

§Flattened flowsets

To gather all flowsets from all packets into a flattened vector:

use netflow_parser::NetflowParser;

let flowsets = NetflowParser::default().parse_bytes_as_netflow_common_flowsets(&v5_packet);

§Custom Field Mappings for V9 and IPFIX

By default, NetflowCommon maps standard IANA fields to the common structure. However, you can customize which fields are used for V9 and IPFIX packets using configuration structs. This is useful when:

  • You want to prefer IPv6 addresses over IPv4
  • Your vendor uses non-standard field mappings
  • You need to extract data from vendor-specific enterprise fields
§V9 Custom Field Mapping
use netflow_parser::netflow_common::{NetflowCommon, V9FieldMappingConfig};
use netflow_parser::variable_versions::v9_lookup::V9Field;

// Create a custom configuration that prefers IPv6 addresses
let mut config = V9FieldMappingConfig::default();
config.src_addr.primary = V9Field::Ipv6SrcAddr;
config.src_addr.fallback = Some(V9Field::Ipv4SrcAddr);
config.dst_addr.primary = V9Field::Ipv6DstAddr;
config.dst_addr.fallback = Some(V9Field::Ipv4DstAddr);

// Use with a parsed V9 packet
// let common = NetflowCommon::from_v9_with_config(&v9_packet, &config);
§IPFIX Custom Field Mapping
use netflow_parser::netflow_common::{NetflowCommon, IPFixFieldMappingConfig};
use netflow_parser::variable_versions::ipfix_lookup::{IPFixField, IANAIPFixField};

// Create a custom configuration that prefers IPv6 addresses
let mut config = IPFixFieldMappingConfig::default();
config.src_addr.primary = IPFixField::IANA(IANAIPFixField::SourceIpv6address);
config.src_addr.fallback = Some(IPFixField::IANA(IANAIPFixField::SourceIpv4address));
config.dst_addr.primary = IPFixField::IANA(IANAIPFixField::DestinationIpv6address);
config.dst_addr.fallback = Some(IPFixField::IANA(IANAIPFixField::DestinationIpv4address));

// Use with a parsed IPFIX packet
// let common = NetflowCommon::from_ipfix_with_config(&ipfix_packet, &config);
§Available Configuration Fields

Both V9FieldMappingConfig and IPFixFieldMappingConfig support configuring:

FieldDescriptionDefault V9 FieldDefault IPFIX Field
src_addrSource IP addressIpv4SrcAddr (fallback: Ipv6SrcAddr)SourceIpv4address (fallback: SourceIpv6address)
dst_addrDestination IP addressIpv4DstAddr (fallback: Ipv6DstAddr)DestinationIpv4address (fallback: DestinationIpv6address)
src_portSource portL4SrcPortSourceTransportPort
dst_portDestination portL4DstPortDestinationTransportPort
protocolProtocol numberProtocolProtocolIdentifier
first_seenFlow start timeFirstSwitchedFlowStartSysUpTime
last_seenFlow end timeLastSwitchedFlowEndSysUpTime
src_macSource MAC addressInSrcMacSourceMacaddress
dst_macDestination MAC addressInDstMacDestinationMacaddress

Each field mapping has a primary field (always checked first) and an optional fallback field (used if primary is not present in the flow record).

§Re-Exporting Flows

Parsed V5, V7, V9, and IPFIX packets can be re-exported back into bytes.

V9/IPFIX Padding Behavior:

  • For parsed packets: Original padding is preserved exactly for byte-perfect round-trips
  • For manually created packets: Padding is automatically calculated to align FlowSets to 4-byte boundaries - simply leave the padding field empty (vec![])

See examples/manual_ipfix_creation.rs for a complete example of creating IPFIX packets from scratch.

use netflow_parser::{NetflowParser, NetflowPacket};

let packet = [
    0, 5, 0, 1, 3, 0, 4, 0, 5, 0, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3,
    4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1,
    2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7,
];
if let NetflowPacket::V5(v5) = NetflowParser::default()
    .parse_bytes(&packet)
    .first()
    .unwrap()
{
    assert_eq!(v5.to_be_bytes(), packet);
}

§V9/IPFIX Notes

Parse the data (&[u8]) like any other version. The parser (NetflowParser) caches parsed templates, so you can send header/data flowset combos and it will use the cached templates. To see cached templates, use the parser for the correct version (v9_parser for V9, ipfix_parser for IPFIX).

IPFIX Note: We only parse sequence number and domain id, it is up to you if you wish to validate it.

use netflow_parser::NetflowParser;
let parser = NetflowParser::default();
dbg!(parser.v9_parser.templates);
dbg!(parser.v9_parser.options_templates);

To access templates flowset of a processed V9/IPFix flowset you can find the flowsets attribute on the Parsed Record. In there you can find Templates, Option Templates, and Data Flowsets.

§Performance & Thread Safety

§Thread Safety

Parsers (NetflowParser, V9Parser, IPFixParser) are not thread-safe and should not be shared across threads without external synchronization. Each parser maintains internal state (template caches) that is modified during parsing.

Recommended pattern for multi-threaded applications:

  • Create one parser instance per thread
  • Each thread processes packets from a single router/source
  • See examples/netflow_udp_listener_multi_threaded.rs for implementation example

§Performance Optimizations

This library includes several performance optimizations:

  1. Single-pass field caching - NetflowCommon conversions use efficient single-pass lookups
  2. Minimal cloning - Template storage avoids unnecessary vector clones
  3. Optimized string processing - Single-pass filtering and prefix stripping
  4. Capacity pre-allocation - Vectors pre-allocate when sizes are known
  5. Bounded error buffers - Error handling limits memory consumption to prevent exhaustion

Best practices for optimal performance:

  • Reuse parser instances instead of creating new ones for each packet
  • Use iter_packets() instead of parse_bytes() when you don’t need all packets in a Vec
  • Use parse_bytes_as_netflow_common_flowsets() when you only need flow data
  • For V9/IPFIX, batch process packets from the same source to maximize template cache hits

§Features

  • parse_unknown_fields - When enabled fields not listed in this library will attempt to be parsed as a Vec of bytes and the field_number listed. When disabled an error is thrown when attempting to parse those fields. Enabled by default.
  • netflow_common - When enabled provides NetflowCommon and NetflowCommonFlowSet structures for working with common fields across different Netflow versions. Disabled by default.

§Included Examples

Examples have been included mainly for those who want to use this parser to read from a Socket and parse netflow. In those cases with V9/IPFix it is best to create a new parser for each router. There are both single threaded and multi-threaded examples in the examples directory.

To run:

cargo run --example netflow_udp_listener_multi_threaded

cargo run --example netflow_udp_listener_single_threaded

cargo run --example netflow_udp_listener_tokio

cargo run --example netflow_pcap

cargo run --example manual_ipfix_creation

The pcap example also shows how to cache flows that have not yet discovered a template.

§Support My Work

If you find my work helpful, consider supporting me!

ko-fi

GitHub Sponsors

Modules§

protocol
static_versions
variable_versions

Structs§

NetflowPacketError
NetflowPacketIterator
Iterator that yields NetflowPacket items from a byte buffer without allocating a Vec. Maintains parser state for template caching (V9/IPFIX).
NetflowParser
PartialParse

Enums§

NetflowPacket
Enum of supported Netflow Versions
NetflowParseError
ParsedNetflow