1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415

use crate::sampling::MetropolisState;


/// # Create a markov chain by doing markov steps
pub trait MarkovChain<S, Res> {
    /// * undo a markov step, return result-state
    /// * if you want to undo more than one step
    /// see [`undo_steps`](#method.undo_steps)
    fn undo_step(&mut self, step: S) -> Res;

    /// * undo a markov, **panic** on invalid result state
    /// * for undoing multiple steps see [`undo_steps_quiet`](#method.undo_steps_quiet)
    fn undo_step_quiet(&mut self, step: S);

    /// # Markov step
    /// * use this to perform a markov step step
    /// * for doing multiple markov steps at once, use [`m_steps`](#method.m_steps)
    fn m_step(&mut self) -> S;

    /// #  Markov steps
    /// * use this to perform multiple markov steps at once
    /// * result `Vec<S>` can be used to undo the steps with `self.undo_steps(result)`
    fn m_steps(&mut self, count: usize) -> Vec<S> {
        let mut vec = Vec::with_capacity(count);
        for _ in 0..count {
            vec.push(
                self.m_step()
            );
        }
        vec
    }

    /// # Undo markov steps
    /// * Note: uses undo_step in correct order and returns result
    /// ## Important:
    /// * look at specific implementation of `undo_step`, every thing mentioned there applies to each step
    fn undo_steps(&mut self, steps: Vec<S>) -> Vec<Res> {
        steps.into_iter()
            .rev()
            .map(|step| self.undo_step(step))
            .collect()
    }

    /// # Undo markov steps
    /// * Note: uses `undo_step_quiet` in correct order
    /// ## Important:
    /// * look at specific implementation of `undo_step_quiet`, every thing mentioned there applies to each step
    fn undo_steps_quiet(&mut self, steps: Vec<S>) {
        let iter = steps.into_iter()
            .rev();
        for step in iter {
            self.undo_step_quiet(step);
        }
    }


}

/// Use the metropolis algorithm
pub trait Metropolis<S, Res>: MarkovChain<S, Res> {
    /// # Metropolis algorithm
    /// **panics**: `stepsize = 0` is not allowed and will result in a panic
    ///
    /// |               | meaning                                                                      |
    /// |---------------|------------------------------------------------------------------------------|
    /// | `rng`         | the Rng used to decide, if a state should be accepted or rejected            |
    /// | `temperature` | used in metropolis probability                                               |
    /// | `stepsize`    | is used for each markov step, i.e., `self.m_steps(stepsize)` is called       |
    /// | `steps`       | is the number of steps with size `stepsize`, that this method should perform |
    /// | `valid_self`  | checks, if the markov steps produced a valid state                           |
    /// | `energy`      | should calculate the "energy" of the system used for acceptance probability  |
    /// | `measure`     | called after each step                                                       |
    ///
    /// **Important**: if possible, treat `energy(&mut Self)` as `energy(&Self)`. This will be safer.
    ///
    /// **Note**: instead of the `temperature` T the literature sometimes uses &beta;. The relation between them is:
    /// &beta; = T⁻¹
    ///
    /// **Note**: If `valid_self` returns `false`, the state will be rejected. If you do not need this,
    /// use `|_| true`
    ///
    /// **`measure`**: function is intended for storing measurable quantities etc.
    /// Is called at the end of each iteration. As for the parameter:
    ///
    /// | type        | name suggestion  | description                                                                                                                                  |
    /// |-------------|------------------|----------------------------------------------------------------------------------------------------------------------------------------------|
    /// | `&mut Self` | `current_state`  | current `self`. After stepping and accepting/rejecting                                                                                       |
    /// | `usize`     | `i`              | counter, starts at 0, each step counter increments by 1                                                                                      |
    /// | `f64`       | `current_energy` | `energy(&mut self)`. Assumes that `energy` of a state deterministic and invariant under: `let steps = self.steps(n); self.undo_steps(steps);`|
    /// | `bool`      | `rejected`       | `true` if last step was rejected. That should mean, that the current state is the same as the last state.                                    |
    ///
    /// Citation see, e.g,
    /// > M. E. J. Newman and G. T. Barkema, "Monte Carlo Methods in Statistical Physics"
    ///   *Clarendon Press*, 1999, ISBN:&nbsp;978-0-19-8517979
    ///
    /// # Explanation
    /// * Performes markov chain using the markov chain trait
    ///
    /// Let the current state of the system be S(i) with corresponding energy `E(i) = energy(S(i))`.
    /// Now perform a markov step, such that the new system is Snew with energy Enew.
    /// The new state will be accepted (meaning S(i+1) = Snew) with probability:
    /// `min[1.0, exp{-1/T * (Enew - E(i))}]`
    /// otherwise the new state will be rejected, meaning S(i + 1) = S(i).
    /// Afterwards, `measure` is called.
    #[allow(clippy::clippy::too_many_arguments)]
    fn metropolis<Rng, F, G, H>(
        &mut self,
        rng: Rng,
        temperature: f64,
        stepsize: usize,
        steps: usize,
        valid_self: F,
        energy: G,
        measure: H,
    ) -> MetropolisState<Rng>
    where
        F: FnMut(&mut Self) -> bool,
        G: FnMut(&mut Self) -> f64,
        H: FnMut(&mut Self, usize, f64, bool),
        Rng: rand::Rng
    {
        self.metropolis_while(
            rng,
            temperature,
            stepsize,
            steps,
            valid_self,
            energy,
            measure,
            |_, _| false
        )
    }

    /// same as `metropolis`, but checks function `break_if(current_state, counter)` after each step and
    /// stops if `true` is returned.
    #[allow(clippy::clippy::too_many_arguments)]
    fn metropolis_while<Rng, F, G, H, B>(
        &mut self,
        mut rng: Rng,
        temperature: f64,
        stepsize: usize,
        steps: usize,
        mut valid_self: F,
        mut energy: G,
        mut measure: H,
        mut brake_if: B,
    ) -> MetropolisState<Rng>
    where
        F: FnMut(&mut Self) -> bool,
        G: FnMut(&mut Self) -> f64,
        H: FnMut(&mut Self, usize, f64, bool),
        B: FnMut(&Self, usize) -> bool,
        Rng: rand::Rng
    {
        assert!(
            stepsize > 0,
            "StepSize 0 is not allowed!"
        );
        let mut old_energy = energy(self);
        let mut current_energy = old_energy;
        let mut last_steps: Vec<_>;
        let mut a_prob: f64;
        let m_beta = -1.0 / temperature;

        for i in 0..steps {
            last_steps = self.m_steps(stepsize);

            // calculate acceptance probability
            let mut rejected = !valid_self(self);
            if !rejected {
                current_energy = energy(self);
                // I only have to calculate this for a valid state
                a_prob = 1.0_f64.min((m_beta * (current_energy - old_energy)).exp());
                rejected = rng.gen::<f64>() > a_prob;
            }


            // if step is NOT accepted
            if rejected {
                self.undo_steps_quiet(last_steps);
                current_energy = old_energy;
            } else {
                old_energy = current_energy;
            }
            measure(self, i, current_energy, rejected);

            #[cold]
            if brake_if(self, i) {
                return MetropolisState::new(stepsize, steps, m_beta, rng, current_energy, i + 1);
            }
        }

        MetropolisState::new(stepsize, steps, m_beta, rng, current_energy, steps)
    }

    /// # resume the metropolis
    /// continues metropolis_while from a specific state.
    ///
    /// Note: this is intended to be used after loading a savestate, e.g., from a file.
    /// You have to store both the MetropolisState and the ensemble
    ///
    /// * asserts, that the `energy(self)` matches the energy stored in `state`. Can be turned of
    /// with `ignore_energy_missmatch = true`
    ///
    /// # Example:
    /// ```
    /// use net_ensembles::sampling::{MetropolisSave, MetropolisState};
    /// use net_ensembles::sampling::traits::{Metropolis, SimpleSample};
    /// use net_ensembles::{ErEnsembleC, EmptyNode};
    /// use net_ensembles::traits::MeasurableGraphQuantities;
    /// // as an alternative to the above, you can use the import from the next line
    /// // use net_ensembles::{*, sampling::*};
    ///
    /// use net_ensembles::rand::SeedableRng; // reexported
    /// use rand_pcg::Pcg64;
    /// use serde_json;
    /// use std::fs::File;
    ///
    /// // first init an ensemble, which implements MarkovChain
    /// let rng = Pcg64::seed_from_u64(7567526);
    /// let mut ensemble = ErEnsembleC::<EmptyNode, _>::new(300, 4.0, rng);
    ///
    /// // ensure that inital state is valid
    /// while !ensemble.is_connected().unwrap() {
    ///     ensemble.randomize();
    /// }
    ///
    /// // now perform metropolis
    /// // in this example the simulation will be interrupted, when the counter hits 20:
    /// // break_if = |_, counter| counter == 20
    /// let metropolis_rng = Pcg64::seed_from_u64(77526);
    /// let state = ensemble.metropolis_while(
    ///     metropolis_rng, // rng
    ///     -10.0,          // temperature
    ///     30,             // stepsize
    ///     100,            // steps
    ///     |ensemble| ensemble.is_connected().unwrap(),    // valid_self
    ///     |ensemble| ensemble.diameter().unwrap() as f64, // energy
    ///     |ensemble, counter, energy, rejected| {         // measure
    ///         // of cause, you can store it in a file instead
    ///         println!("{}, {}, {}, {}", counter, rejected, energy, ensemble.leaf_count());
    ///     },
    ///     |_, counter| counter == 20,                     // break_if
    /// );
    ///
    /// // NOTE: You will likely not need the cfg part
    /// // I only need it, because the example has to work with and without serde_support
    /// #[cfg(feature = "serde_support")]
    /// {
    ///     // saving
    ///     let save_file = File::create("metropolis.save")
    ///         .expect("Unable to create file");
    ///
    ///     let save = MetropolisSave::new(ensemble, state);
    ///     serde_json::to_writer_pretty(save_file, &save)
    ///         .unwrap();
    ///
    ///
    ///     // loading
    ///     let reader = File::open("metropolis.save")
    ///         .expect("Unable to open file");
    ///
    ///     let save: MetropolisSave::<ErEnsembleC::<EmptyNode, Pcg64>, Pcg64>
    ///         = serde_json::from_reader(reader).unwrap();
    ///
    ///     let (mut loaded_ensemble, loaded_state) = save.unpack();
    ///
    ///     // resume the simulation
    ///     loaded_ensemble.continue_metropolis_while(
    ///         loaded_state,
    ///         false,                   // asserting that current energy equals stored energy
    ///         |ensemble| ensemble.is_connected().unwrap(),    // valid_self
    ///         |ensemble| ensemble.diameter().unwrap() as f64, // energy
    ///         |ensemble, counter, energy, rejected| {         // measure
    ///             // of cause, you could store it in a file instead
    ///             // and you could use the `rejected` variable to only calculate other
    ///             // quantities, if something actually changed
    ///             println!("{}, {}, {}, {}", counter, rejected, energy, ensemble.leaf_count());
    ///         },
    ///         |_, _| false,                     // break_if
    ///     );
    /// }
    /// ```
    #[allow(clippy::clippy::too_many_arguments)]
    fn continue_metropolis_while<Rng, F, G, H, B>(
        &mut self,
        state: MetropolisState<Rng>,
        ignore_energy_missmatch: bool,
        mut valid_self: F,
        mut energy: G,
        mut measure: H,
        mut brake_if: B,
    ) -> MetropolisState<Rng>
    where
        F: FnMut(&mut Self) -> bool,
        G: FnMut(&mut Self) -> f64,
        H: FnMut(&mut Self, usize, f64, bool),
        B: FnMut(&Self, usize) -> bool,
        Rng: rand::Rng
    {
        let mut old_energy = energy(self);
        if !ignore_energy_missmatch {
            assert_eq!(
                old_energy,
                state.current_energy(),
                "Energy missmatch!"
            );
        }
        let mut current_energy = old_energy;
        let mut last_steps: Vec<_>;
        let mut a_prob: f64;
        let m_beta = state.m_beta();
        let steps = state.step_target();
        let stepsize = state.stepsize();
        let counter = state.counter();
        let mut rng = state.to_rng();

        for i in counter..steps {
            last_steps = self.m_steps(stepsize);

            // calculate acceptance probability
            let mut rejected = !valid_self(self);
            if !rejected {
                // I only have to calculate this for a valid state
                current_energy = energy(self);

                a_prob = 1.0_f64.min((m_beta * (current_energy - old_energy)).exp());
                rejected = rng.gen::<f64>() > a_prob;
            }


            // if step is NOT accepted
            if rejected {
                self.undo_steps_quiet(last_steps);
                current_energy = old_energy;
            } else {
                old_energy = current_energy;
            }
            measure(self, i, current_energy, rejected);

            #[cold]
            if brake_if(self, i) {
                return MetropolisState::new(stepsize, steps, m_beta, rng, current_energy, i + 1);
            }
        }

        MetropolisState::new(stepsize, steps, m_beta, rng, current_energy, steps)
    }


    /// same as `continue_metropolis_while`, but without the `brake_if`
    fn continue_metropolis<Rng, F, G, H>(
        &mut self,
        state: MetropolisState<Rng>,
        ignore_energy_missmatch: bool,
        valid_self: F,
        energy: G,
        measure: H,
    ) -> MetropolisState<Rng>
    where
        F: FnMut(&mut Self) -> bool,
        G: FnMut(&mut Self) -> f64,
        H: FnMut(&mut Self, usize, f64, bool),
        Rng: rand::Rng
    {
        self.continue_metropolis_while(
            state,
            ignore_energy_missmatch,
            valid_self,
            energy,
            measure,
            |_, _| false
        )
    }
}

impl<S, Res, A> Metropolis<S, Res> for A
where A: MarkovChain<S, Res> { }

/// For easy sampling of your ensemble
pub trait SimpleSample{
    /// # Randomizes self according to  model
    /// * this is intended for creation of initial sample
    /// * used in [`simple_sample`](#method.simple_sample)
    /// and [`simple_sample_vec`](#method.simple_sample_vec)
    fn randomize(&mut self);

    /// # do the following `times` times:
    /// 1) `f(self)`
    /// 2) `self.randomize()`
    fn simple_sample<F>(&mut self, times: usize, mut f: F)
        where F: FnMut(&Self) -> ()
    {
        for _ in 0..times {
            f(self);
            self.randomize();
        }
    }

    /// # do the following `times` times:
    /// 1) `res = f(self)`
    /// 2) `self.randomize()`
    /// ## res is collected into Vector
    fn simple_sample_vec<F, G>(&mut self, times: usize, mut f: F) -> Vec<G>
        where F: FnMut(&Self) -> G
    {
        let mut vec = Vec::with_capacity(times);
        for _ in 0..times {
            vec.push(f(self));
            self.randomize();
        }
        vec
    }
}