1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
//! Functions for splitting sequences into fixed-width moving windows (kmers)
//! and utilities for dealing with these kmers.

/// Returns true if the base is a unambiguous nucleic acid base (e.g. ACGT) and
/// false otherwise.
fn is_good_base(chr: u8) -> bool {
    match chr as char {
        'a' | 'c' | 'g' | 't' | 'A' | 'C' | 'G' | 'T' => true,
        _ => false,
    }
}

/// Generic moving window iterator over sequences to return k-mers
///
/// Iterator returns slices to the original data.
pub struct Kmers<'a> {
    k: u8,
    start_pos: usize,
    buffer: &'a [u8],
}

impl<'a> Kmers<'a> {
    /// Creates a new kmer-izer for a nucleotide/amino acid sequence.
    pub fn new(buffer: &'a [u8], k: u8) -> Self {
        Kmers {
            k,
            start_pos: 0,
            buffer,
        }
    }
}

impl<'a> Iterator for Kmers<'a> {
    type Item = &'a [u8];

    fn next(&mut self) -> Option<Self::Item> {
        if self.start_pos + self.k as usize > self.buffer.len() {
            return None;
        }
        let pos = self.start_pos;
        self.start_pos += 1;
        Some(&self.buffer[pos..pos + self.k as usize])
    }
}

/// A kmer-izer for a nucleotide acid sequences to return canonical kmers.
///
/// Iterator returns the position of the kmer, a slice to the original data,
/// and an boolean indicating if the kmer returned is the original or the
/// reverse complement.
pub struct CanonicalKmers<'a> {
    k: u8,
    start_pos: usize,
    buffer: &'a [u8],
    rc_buffer: &'a [u8],
}

impl<'a> CanonicalKmers<'a> {
    /// Creates a new iterator.
    ///
    /// It's generally more useful to use this directly from a sequences (e.g.
    /// `seq.canonical_kmers`. Requires a reference to the reverse complement
    /// of the sequence it's created on, e.g.
    /// ```
    /// use needletail::Sequence;
    /// use needletail::kmer::CanonicalKmers;
    ///
    /// let seq = b"ACGT";
    /// let rc = seq.reverse_complement();
    /// let c_iter = CanonicalKmers::new(seq, &rc, 3);
    /// for (pos, kmer, canonical) in c_iter {
    ///    // process data in here
    /// }
    ///
    /// ```
    pub fn new(buffer: &'a [u8], rc_buffer: &'a [u8], k: u8) -> Self {
        let mut nucl_kmers = CanonicalKmers {
            k,
            start_pos: 0,
            buffer,
            rc_buffer,
        };
        nucl_kmers.update_position(true);
        nucl_kmers
    }

    fn update_position(&mut self, initial: bool) -> bool {
        // check if we have enough "physical" space for one more kmer
        if self.start_pos + self.k as usize > self.buffer.len() {
            return false;
        }

        let (mut kmer_len, stop_len) = if initial {
            (0, (self.k - 1) as usize)
        } else {
            ((self.k - 1) as usize, self.k as usize)
        };

        while kmer_len < stop_len {
            if is_good_base(self.buffer[self.start_pos + kmer_len]) {
                kmer_len += 1;
            } else {
                kmer_len = 0;
                self.start_pos += kmer_len + 1;
                if self.start_pos + self.k as usize > self.buffer.len() {
                    return false;
                }
            }
        }
        true
    }
}

impl<'a> Iterator for CanonicalKmers<'a> {
    type Item = (usize, &'a [u8], bool);

    fn next(&mut self) -> Option<(usize, &'a [u8], bool)> {
        if !self.update_position(false) {
            return None;
        }
        let pos = self.start_pos;
        self.start_pos += 1;

        let result = &self.buffer[pos..pos + self.k as usize];
        let rc_buffer = self.rc_buffer;
        let rc_result = &rc_buffer[rc_buffer.len() - pos - self.k as usize..rc_buffer.len() - pos];
        if result < rc_result {
            Some((pos, result, false))
        } else {
            Some((pos, rc_result, true))
        }
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use crate::sequence::Sequence;

    #[test]
    fn can_kmerize() {
        let k_iter = Kmers::new(b"AGCT", 1);
        // test general function
        for (i, k) in k_iter.enumerate() {
            match i {
                0 => assert_eq!(k, b"A"),
                1 => assert_eq!(k, b"G"),
                2 => assert_eq!(k, b"C"),
                3 => assert_eq!(k, b"T"),
                _ => unreachable!("Too many kmers"),
            }
        }

        // test that we handle length 2 (and don't drop Ns)
        let k_iter = Kmers::new(b"AGNCT", 2);
        for (i, k) in k_iter.enumerate() {
            match i {
                0 => assert_eq!(k, b"AG"),
                1 => assert_eq!(k, b"GN"),
                2 => assert_eq!(k, b"NC"),
                3 => assert_eq!(k, b"CT"),
                _ => unreachable!("Too many kmers"),
            }
        }

        // test that the minimum length works
        let k_iter = Kmers::new(b"AC", 2);
        for k in k_iter {
            assert_eq!(k, &b"AC"[..]);
        }
    }

    #[test]
    fn can_canonicalize() {
        // test general function
        let seq = b"AGCT";
        let rc_seq = seq.reverse_complement();
        let c_iter = CanonicalKmers::new(seq, &rc_seq, 1);
        for (i, (_, k, is_c)) in c_iter.enumerate() {
            match i {
                0 => {
                    assert_eq!(k, b"A");
                    assert_eq!(is_c, false);
                }
                1 => {
                    assert_eq!(k, b"C");
                    assert_eq!(is_c, true);
                }
                2 => {
                    assert_eq!(k, b"C");
                    assert_eq!(is_c, false);
                }
                3 => {
                    assert_eq!(k, b"A");
                    assert_eq!(is_c, true);
                }
                _ => unreachable!("Too many kmers"),
            }
        }

        let seq = b"AGCTA";
        let rc_seq = seq.reverse_complement();
        let c_iter = CanonicalKmers::new(seq, &rc_seq, 2);
        for (i, (_, k, _)) in c_iter.enumerate() {
            match i {
                0 => assert_eq!(k, b"AG"),
                1 => assert_eq!(k, b"GC"),
                2 => assert_eq!(k, b"AG"),
                3 => assert_eq!(k, b"TA"),
                _ => unreachable!("Too many kmers"),
            }
        }

        let seq = b"AGNTA";
        let rc_seq = seq.reverse_complement();
        let c_iter = CanonicalKmers::new(seq, &rc_seq, 2);
        for (i, (ix, k, _)) in c_iter.enumerate() {
            match i {
                0 => {
                    assert_eq!(ix, 0);
                    assert_eq!(k, b"AG");
                }
                1 => {
                    assert_eq!(ix, 3);
                    assert_eq!(k, b"TA");
                }
                _ => unreachable!("Too many kmers"),
            }
        }
    }
}