1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
#![cfg(feature = "hardware_buffer")]
use jni_sys::{jobject, JNIEnv};
use num_enum::{IntoPrimitive, TryFromPrimitive};
use std::{
    convert::TryInto, mem::MaybeUninit, ops::Deref, os::raw::c_void, os::unix::io::RawFd,
    ptr::NonNull,
};

#[derive(Copy, Clone, Debug, PartialEq, Eq)]
pub struct HardwareBufferUsage(pub ffi::AHardwareBuffer_UsageFlags);

impl HardwareBufferUsage {
    pub const CPU_READ_NEVER: Self =
        Self(ffi::AHardwareBuffer_UsageFlags_AHARDWAREBUFFER_USAGE_CPU_READ_NEVER);
    pub const CPU_READ_RARELY: Self =
        Self(ffi::AHardwareBuffer_UsageFlags_AHARDWAREBUFFER_USAGE_CPU_READ_RARELY);
    pub const CPU_READ_OFTEN: Self =
        Self(ffi::AHardwareBuffer_UsageFlags_AHARDWAREBUFFER_USAGE_CPU_READ_OFTEN);
    pub const CPU_READ_MASK: Self =
        Self(ffi::AHardwareBuffer_UsageFlags_AHARDWAREBUFFER_USAGE_CPU_READ_MASK);

    pub const CPU_WRITE_NEVER: Self =
        Self(ffi::AHardwareBuffer_UsageFlags_AHARDWAREBUFFER_USAGE_CPU_WRITE_NEVER);
    pub const CPU_WRITE_RARELY: Self =
        Self(ffi::AHardwareBuffer_UsageFlags_AHARDWAREBUFFER_USAGE_CPU_WRITE_RARELY);
    pub const CPU_WRITE_OFTEN: Self =
        Self(ffi::AHardwareBuffer_UsageFlags_AHARDWAREBUFFER_USAGE_CPU_WRITE_OFTEN);
    pub const CPU_WRITE_MASK: Self =
        Self(ffi::AHardwareBuffer_UsageFlags_AHARDWAREBUFFER_USAGE_CPU_WRITE_MASK);

    pub const GPU_SAMPLED_IMAGE: Self =
        Self(ffi::AHardwareBuffer_UsageFlags_AHARDWAREBUFFER_USAGE_GPU_SAMPLED_IMAGE);
    pub const GPU_FRAMEBUFFER: Self =
        Self(ffi::AHardwareBuffer_UsageFlags_AHARDWAREBUFFER_USAGE_GPU_FRAMEBUFFER);
    pub const COMPOSER_OVERLAY: Self =
        Self(ffi::AHardwareBuffer_UsageFlags_AHARDWAREBUFFER_USAGE_COMPOSER_OVERLAY);
    pub const PROTECTED_CONTENT: Self =
        Self(ffi::AHardwareBuffer_UsageFlags_AHARDWAREBUFFER_USAGE_PROTECTED_CONTENT);
    pub const VIDEO_ENCODE: Self =
        Self(ffi::AHardwareBuffer_UsageFlags_AHARDWAREBUFFER_USAGE_VIDEO_ENCODE);
    pub const SENSOR_DIRECT_DATA: Self =
        Self(ffi::AHardwareBuffer_UsageFlags_AHARDWAREBUFFER_USAGE_SENSOR_DIRECT_DATA);
    pub const GPU_DATA_BUFFER: Self =
        Self(ffi::AHardwareBuffer_UsageFlags_AHARDWAREBUFFER_USAGE_GPU_DATA_BUFFER);
    pub const GPU_CUBE_MAP: Self =
        Self(ffi::AHardwareBuffer_UsageFlags_AHARDWAREBUFFER_USAGE_GPU_CUBE_MAP);
    pub const GPU_MIPMAP_COMPLETE: Self =
        Self(ffi::AHardwareBuffer_UsageFlags_AHARDWAREBUFFER_USAGE_GPU_MIPMAP_COMPLETE);

    pub const VENDOR_0: Self = Self(ffi::AHardwareBuffer_UsageFlags_AHARDWAREBUFFER_USAGE_VENDOR_0);
    pub const VENDOR_1: Self = Self(ffi::AHardwareBuffer_UsageFlags_AHARDWAREBUFFER_USAGE_VENDOR_1);
    pub const VENDOR_2: Self = Self(ffi::AHardwareBuffer_UsageFlags_AHARDWAREBUFFER_USAGE_VENDOR_2);
    pub const VENDOR_3: Self = Self(ffi::AHardwareBuffer_UsageFlags_AHARDWAREBUFFER_USAGE_VENDOR_3);
    pub const VENDOR_4: Self = Self(ffi::AHardwareBuffer_UsageFlags_AHARDWAREBUFFER_USAGE_VENDOR_4);
    pub const VENDOR_5: Self = Self(ffi::AHardwareBuffer_UsageFlags_AHARDWAREBUFFER_USAGE_VENDOR_5);
    pub const VENDOR_6: Self = Self(ffi::AHardwareBuffer_UsageFlags_AHARDWAREBUFFER_USAGE_VENDOR_6);
    pub const VENDOR_7: Self = Self(ffi::AHardwareBuffer_UsageFlags_AHARDWAREBUFFER_USAGE_VENDOR_7);
    pub const VENDOR_8: Self = Self(ffi::AHardwareBuffer_UsageFlags_AHARDWAREBUFFER_USAGE_VENDOR_8);
    pub const VENDOR_9: Self = Self(ffi::AHardwareBuffer_UsageFlags_AHARDWAREBUFFER_USAGE_VENDOR_9);
    pub const VENDOR_10: Self =
        Self(ffi::AHardwareBuffer_UsageFlags_AHARDWAREBUFFER_USAGE_VENDOR_10);
    pub const VENDOR_11: Self =
        Self(ffi::AHardwareBuffer_UsageFlags_AHARDWAREBUFFER_USAGE_VENDOR_11);
    pub const VENDOR_12: Self =
        Self(ffi::AHardwareBuffer_UsageFlags_AHARDWAREBUFFER_USAGE_VENDOR_12);
    pub const VENDOR_13: Self =
        Self(ffi::AHardwareBuffer_UsageFlags_AHARDWAREBUFFER_USAGE_VENDOR_13);
    pub const VENDOR_14: Self =
        Self(ffi::AHardwareBuffer_UsageFlags_AHARDWAREBUFFER_USAGE_VENDOR_14);
    pub const VENDOR_15: Self =
        Self(ffi::AHardwareBuffer_UsageFlags_AHARDWAREBUFFER_USAGE_VENDOR_15);
    pub const VENDOR_16: Self =
        Self(ffi::AHardwareBuffer_UsageFlags_AHARDWAREBUFFER_USAGE_VENDOR_16);
    pub const VENDOR_17: Self =
        Self(ffi::AHardwareBuffer_UsageFlags_AHARDWAREBUFFER_USAGE_VENDOR_17);
    pub const VENDOR_18: Self =
        Self(ffi::AHardwareBuffer_UsageFlags_AHARDWAREBUFFER_USAGE_VENDOR_18);
    pub const VENDOR_19: Self =
        Self(ffi::AHardwareBuffer_UsageFlags_AHARDWAREBUFFER_USAGE_VENDOR_19);
}

#[repr(u32)]
#[derive(Copy, Clone, Debug, PartialEq, Eq, TryFromPrimitive, IntoPrimitive)]
#[allow(non_camel_case_types)]
pub enum HardwareBufferFormat {
    R8G8B8A8_UNORM = ffi::AHardwareBuffer_Format_AHARDWAREBUFFER_FORMAT_R8G8B8A8_UNORM,
    R8G8B8X8_UNORM = ffi::AHardwareBuffer_Format_AHARDWAREBUFFER_FORMAT_R8G8B8X8_UNORM,
    R8G8B8_UNORM = ffi::AHardwareBuffer_Format_AHARDWAREBUFFER_FORMAT_R8G8B8_UNORM,
    R5G6B5_UNORM = ffi::AHardwareBuffer_Format_AHARDWAREBUFFER_FORMAT_R5G6B5_UNORM,
    R16G16B16A16_FLOAT = ffi::AHardwareBuffer_Format_AHARDWAREBUFFER_FORMAT_R16G16B16A16_FLOAT,
    R10G10B10A2_UNORM = ffi::AHardwareBuffer_Format_AHARDWAREBUFFER_FORMAT_R10G10B10A2_UNORM,
    BLOB = ffi::AHardwareBuffer_Format_AHARDWAREBUFFER_FORMAT_BLOB,
    D16_UNORM = ffi::AHardwareBuffer_Format_AHARDWAREBUFFER_FORMAT_D16_UNORM,
    D24_UNORM = ffi::AHardwareBuffer_Format_AHARDWAREBUFFER_FORMAT_D24_UNORM,
    D24_UNORM_S8_UINT = ffi::AHardwareBuffer_Format_AHARDWAREBUFFER_FORMAT_D24_UNORM_S8_UINT,
    D32_FLOAT = ffi::AHardwareBuffer_Format_AHARDWAREBUFFER_FORMAT_D32_FLOAT,
    D32_FLOAT_S8_UINT = ffi::AHardwareBuffer_Format_AHARDWAREBUFFER_FORMAT_D32_FLOAT_S8_UINT,
    S8_UINT = ffi::AHardwareBuffer_Format_AHARDWAREBUFFER_FORMAT_S8_UINT,
    Y8Cb8Cr8_420 = ffi::AHardwareBuffer_Format_AHARDWAREBUFFER_FORMAT_Y8Cb8Cr8_420,
}

#[derive(Copy, Clone, Debug, Ord, PartialOrd, Eq, PartialEq)]
pub struct HardwareBufferError(pub i32);

pub type Result<T, E = HardwareBufferError> = std::result::Result<T, E>;

pub type Rect = ffi::ARect;

fn construct<T>(with_ptr: impl FnOnce(*mut T) -> i32) -> Result<T, HardwareBufferError> {
    let mut result = MaybeUninit::uninit();
    let status = with_ptr(result.as_mut_ptr());
    if status == 0 {
        Ok(unsafe { result.assume_init() })
    } else {
        Err(HardwareBufferError(status))
    }
}

#[derive(Debug)]
pub struct HardwareBuffer {
    inner: NonNull<ffi::AHardwareBuffer>,
}

impl HardwareBuffer {
    /// Create a `HardwareBuffer` from a native pointer
    ///
    /// # Safety
    /// By calling this function, you assert that it is a valid pointer to
    /// an NDK `AHardwareBuffer`.
    pub unsafe fn from_ptr(ptr: NonNull<ffi::AHardwareBuffer>) -> Self {
        Self { inner: ptr }
    }

    fn as_ptr(&self) -> *mut ffi::AHardwareBuffer {
        self.inner.as_ptr()
    }

    pub fn allocate(desc: HardwareBufferDesc) -> Result<HardwareBufferRef> {
        unsafe {
            let ptr = construct(|res| ffi::AHardwareBuffer_allocate(&desc.into_native(), res))?;

            Ok(HardwareBufferRef {
                inner: Self::from_ptr(NonNull::new_unchecked(ptr)),
            })
        }
    }

    /// Create a `HardwareBuffer` from JNI pointers
    ///
    /// # Safety
    /// By calling this function, you assert that it these are valid pointers to JNI objects.
    pub unsafe fn from_jni(env: *mut JNIEnv, hardware_buffer: jobject) -> Self {
        let ptr = ffi::AHardwareBuffer_fromHardwareBuffer(env, hardware_buffer);

        Self::from_ptr(NonNull::new_unchecked(ptr))
    }

    /// # Safety
    /// By calling this function, you assert that `env` is a valid pointer to a [`JNIEnv`].
    pub unsafe fn to_jni(&self, env: *mut JNIEnv) -> jobject {
        ffi::AHardwareBuffer_toHardwareBuffer(env, self.as_ptr())
    }

    pub fn describe(&self) -> HardwareBufferDesc {
        let desc = unsafe {
            let mut result = MaybeUninit::uninit();
            ffi::AHardwareBuffer_describe(self.as_ptr(), result.as_mut_ptr());
            result.assume_init()
        };

        HardwareBufferDesc {
            width: desc.width,
            height: desc.height,
            layers: desc.layers,
            format: desc.format.try_into().unwrap(),
            usage: HardwareBufferUsage(desc.usage),
            stride: desc.stride,
        }
    }

    #[cfg(feature = "api-level-29")]
    pub fn is_supported(desc: HardwareBufferDesc) -> bool {
        let res = unsafe { ffi::AHardwareBuffer_isSupported(&desc.into_native()) };
        res == 1
    }

    pub fn lock(
        &self,
        usage: HardwareBufferUsage,
        fence: Option<RawFd>,
        rect: Option<Rect>,
    ) -> Result<*mut c_void> {
        let fence = fence.unwrap_or(-1);
        let rect = match rect {
            Some(rect) => &rect,
            None => std::ptr::null(),
        };
        construct(|res| unsafe {
            ffi::AHardwareBuffer_lock(self.as_ptr(), usage.0, fence, rect, res)
        })
    }

    #[cfg(feature = "api-level-29")]
    pub fn lock_and_get_info(
        &self,
        usage: HardwareBufferUsage,
        fence: Option<RawFd>,
        rect: Option<Rect>,
    ) -> Result<LockedPlaneInfo> {
        let fence = fence.unwrap_or(-1);
        let rect = match rect {
            Some(rect) => &rect,
            None => std::ptr::null(),
        };
        let mut virtual_address = MaybeUninit::uninit();
        let mut bytes_per_pixel = MaybeUninit::uninit();
        let mut bytes_per_stride = MaybeUninit::uninit();
        let status = unsafe {
            ffi::AHardwareBuffer_lockAndGetInfo(
                self.as_ptr(),
                usage.0,
                fence,
                rect,
                virtual_address.as_mut_ptr(),
                bytes_per_pixel.as_mut_ptr(),
                bytes_per_stride.as_mut_ptr(),
            )
        };
        if status == 0 {
            Ok(unsafe {
                LockedPlaneInfo {
                    virtual_address: virtual_address.assume_init(),
                    bytes_per_pixel: bytes_per_pixel.assume_init() as u32,
                    bytes_per_stride: bytes_per_stride.assume_init() as u32,
                }
            })
        } else {
            Err(HardwareBufferError(status))
        }
    }

    #[cfg(feature = "api-level-29")]
    pub fn lock_planes(
        &self,
        usage: HardwareBufferUsage,
        fence: Option<RawFd>,
        rect: Option<Rect>,
    ) -> Result<HardwareBufferPlanes> {
        let fence = fence.unwrap_or(-1);
        let rect = match rect {
            Some(rect) => &rect,
            None => std::ptr::null(),
        };
        let planes = construct(|res| unsafe {
            ffi::AHardwareBuffer_lockPlanes(self.as_ptr(), usage.0, fence, rect, res)
        })?;

        Ok(HardwareBufferPlanes {
            inner: planes,
            index: 0,
        })
    }

    pub fn unlock(&self) -> Result<()> {
        let status = unsafe { ffi::AHardwareBuffer_unlock(self.as_ptr(), std::ptr::null_mut()) };
        if status == 0 {
            Ok(())
        } else {
            Err(HardwareBufferError(status))
        }
    }

    /// Returns a fence file descriptor that will become signalled when unlocking is completed,
    /// or `None` if unlocking is already finished.
    pub fn unlock_async(&self) -> Result<Option<RawFd>> {
        let fence = construct(|res| unsafe { ffi::AHardwareBuffer_unlock(self.as_ptr(), res) })?;
        Ok(match fence {
            -1 => None,
            fence => Some(fence),
        })
    }

    pub fn recv_handle_from_unix_socket(socket_fd: RawFd) -> Result<Self> {
        unsafe {
            let ptr =
                construct(|res| ffi::AHardwareBuffer_recvHandleFromUnixSocket(socket_fd, res))?;

            Ok(Self::from_ptr(NonNull::new_unchecked(ptr)))
        }
    }

    pub fn send_handle_to_unix_socket(&self, socket_fd: RawFd) -> Result<()> {
        unsafe {
            let status = ffi::AHardwareBuffer_sendHandleToUnixSocket(self.as_ptr(), socket_fd);
            if status == 0 {
                Ok(())
            } else {
                Err(HardwareBufferError(status))
            }
        }
    }

    pub fn acquire(&self) -> HardwareBufferRef {
        unsafe {
            ffi::AHardwareBuffer_acquire(self.as_ptr());
        }
        HardwareBufferRef {
            inner: HardwareBuffer { inner: self.inner },
        }
    }
}

/// A `HardwareBuffer` with an owned reference, the reference is released when dropped.
/// It behaves much like a strong `Rc` reference.
#[derive(Debug)]
pub struct HardwareBufferRef {
    inner: HardwareBuffer,
}

impl Deref for HardwareBufferRef {
    type Target = HardwareBuffer;

    fn deref(&self) -> &Self::Target {
        &self.inner
    }
}

impl Drop for HardwareBufferRef {
    fn drop(&mut self) {
        unsafe {
            ffi::AHardwareBuffer_release(self.inner.as_ptr());
        }
    }
}

#[derive(Copy, Clone, Debug, PartialEq, Eq)]
pub struct HardwareBufferDesc {
    width: u32,
    height: u32,
    layers: u32,
    format: HardwareBufferFormat,
    usage: HardwareBufferUsage,
    stride: u32,
}

impl HardwareBufferDesc {
    fn into_native(self) -> ffi::AHardwareBuffer_Desc {
        ffi::AHardwareBuffer_Desc {
            width: self.width,
            height: self.height,
            layers: self.layers,
            format: self.format.try_into().unwrap(),
            usage: self.usage.0,
            stride: self.stride,
            rfu0: 0,
            rfu1: 0,
        }
    }
}

#[derive(Copy, Clone, Debug, PartialEq, Eq)]
pub struct LockedPlaneInfo {
    pub virtual_address: *mut c_void,
    pub bytes_per_pixel: u32,
    pub bytes_per_stride: u32,
}

#[derive(Debug)]
pub struct HardwareBufferPlanes {
    inner: ffi::AHardwareBuffer_Planes,
    index: u32,
}

impl Iterator for HardwareBufferPlanes {
    type Item = LockedPlaneInfo;

    fn next(&mut self) -> Option<LockedPlaneInfo> {
        if self.index == self.inner.planeCount {
            None
        } else {
            let plane = self.inner.planes[self.index as usize];
            self.index += 1;
            Some(LockedPlaneInfo {
                virtual_address: plane.data,
                bytes_per_pixel: plane.pixelStride,
                bytes_per_stride: plane.rowStride,
            })
        }
    }
}