1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
use crate::core::colour_models::*;
use crate::core::traits::PixelBound;
use ndarray::prelude::*;
use ndarray::s;
use num_traits::cast::{FromPrimitive, NumCast};
use num_traits::Num;
use std::marker::PhantomData;
#[derive(Clone, Eq, PartialEq, Hash, Debug)]
pub struct Image<T, C>
where
C: ColourModel,
{
pub data: Array3<T>,
pub(crate) model: PhantomData<C>,
}
impl<T, C> Image<T, C>
where
T: Copy + Clone + FromPrimitive + Num + NumCast + PixelBound,
C: ColourModel,
{
pub fn into_type<T2>(self) -> Image<T2, C>
where
T2: Copy + Clone + FromPrimitive + Num + NumCast + PixelBound,
{
let rescale = |x: &T| {
let scaled = normalise_pixel_value(*x)
* (T2::max_pixel() - T2::min_pixel())
.to_f64()
.unwrap_or_else(|| 0.0f64);
T2::from_f64(scaled).unwrap_or_else(T2::zero) + T2::min_pixel()
};
let data = self.data.map(rescale);
Image::<T2, C>::from_data(data)
}
}
impl<T, C> Image<T, C>
where
T: Clone + Num,
C: ColourModel,
{
pub fn new(rows: usize, columns: usize) -> Self {
Image {
data: Array3::<T>::zeros((rows, columns, C::channels())),
model: PhantomData,
}
}
pub fn from_shape_data(rows: usize, cols: usize, data: Vec<T>) -> Self {
let data = Array3::<T>::from_shape_vec((rows, cols, C::channels()), data)
.unwrap_or_else(|_| Array3::<T>::zeros((rows, cols, C::channels())));
Image {
data,
model: PhantomData,
}
}
}
impl<T, C> Image<T, C>
where
C: ColourModel,
{
pub fn from_data(data: Array3<T>) -> Self {
Image {
data,
model: PhantomData,
}
}
pub fn rows(&self) -> usize {
self.data.shape()[0]
}
pub fn cols(&self) -> usize {
self.data.shape()[1]
}
pub fn channels(&self) -> usize {
C::channels()
}
pub fn pixel(&self, row: usize, col: usize) -> ArrayView<T, Ix1> {
self.data.slice(s![row, col, ..])
}
pub fn pixel_mut(&mut self, row: usize, col: usize) -> ArrayViewMut<T, Ix1> {
self.data.slice_mut(s![row, col, ..])
}
}
pub fn normalise_pixel_value<T>(t: T) -> f64
where
T: PixelBound + Num + NumCast,
{
let numerator = (t + T::min_pixel()).to_f64();
let denominator = (T::max_pixel() - T::min_pixel()).to_f64();
let numerator = numerator.unwrap_or_else(|| 0.0f64);
let denominator = denominator.unwrap_or_else(|| 1.0f64);
numerator / denominator
}
#[cfg(test)]
mod tests {
use super::*;
use ndarray::arr1;
#[test]
fn image_consistency_checks() {
let i = Image::<u8, RGB>::new(1, 2);
assert_eq!(i.rows(), 1);
assert_eq!(i.cols(), 2);
assert_eq!(i.channels(), 3);
assert_eq!(i.channels(), i.data.shape()[2]);
}
#[test]
fn image_type_conversion() {
let mut i = Image::<u8, RGB>::new(1, 1);
i.pixel_mut(0, 0)
.assign(&arr1(&[u8::max_value(), 0, u8::max_value() / 3]));
let t: Image<u16, RGB> = i.into_type();
assert_eq!(
t.pixel(0, 0),
arr1(&[u16::max_value(), 0, u16::max_value() / 3])
);
}
}