1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
use crate::core::{ColourModel, Image};
use ndarray::prelude::*;
use ndarray::{IntoDimension, Zip};
use ndarray_stats::interpolate::*;
use ndarray_stats::Quantile1dExt;
use num_traits::{FromPrimitive, Num, ToPrimitive};
use std::marker::PhantomData;
pub trait MedianFilterExt {
fn median_filter<E>(&self, region: E) -> Self
where
E: IntoDimension<Dim = Ix2>;
}
impl<T> MedianFilterExt for Array3<T>
where
T: Copy + Clone + FromPrimitive + ToPrimitive + Num + Ord,
{
fn median_filter<E>(&self, region: E) -> Self
where
E: IntoDimension<Dim = Ix2>,
{
let shape = region.into_dimension();
let r_offset = shape[0] / 2;
let c_offset = shape[1] / 2;
let region = (shape[0], shape[1], 1);
let mut result = Array3::<T>::zeros(self.dim());
Zip::indexed(self.windows(region)).apply(|(i, j, k), window| {
let mut flat_window = Array::from_iter(window.iter()).mapv(|x| *x);
if let Some(v) = flat_window.quantile_mut::<Linear>(0.5) {
result
.get_mut([i + r_offset, j + c_offset, k])
.map(|r| *r = v);
}
});
result
}
}
impl<T, C> MedianFilterExt for Image<T, C>
where
T: Copy + Clone + FromPrimitive + ToPrimitive + Num + Ord,
C: ColourModel,
{
fn median_filter<E>(&self, region: E) -> Self
where
E: IntoDimension<Dim = Ix2>,
{
let data = self.data.median_filter(region);
Image {
data,
model: PhantomData,
}
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::core::colour_models::{Gray, RGB};
#[test]
fn simple_median() {
let mut pixels = Vec::<u8>::new();
for i in 0..9 {
pixels.extend_from_slice(&[i, i + 1, i + 2]);
}
let image = Image::<_, RGB>::from_shape_data(3, 3, pixels);
let image = image.median_filter((3, 3));
let mut expected = Image::<u8, RGB>::new(3, 3);
expected.pixel_mut(1, 1).assign(&arr1(&[4, 5, 6]));
assert_eq!(image, expected);
}
#[test]
fn row_median() {
let pixels = vec![1, 2, 3, 4, 5, 6, 7];
let image = Image::<_, Gray>::from_shape_data(7, 1, pixels);
let image = image.median_filter((3, 1));
let expected_pixels = vec![0, 2, 3, 4, 5, 6, 0];
let expected = Image::<_, Gray>::from_shape_data(7, 1, expected_pixels);
assert_eq!(image, expected);
}
}