1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
use crate::core::{ColourModel, Image};
use ndarray::prelude::*;
use ndarray::{IntoDimension, Zip};
use ndarray_stats::interpolate::*;
use ndarray_stats::Quantile1dExt;
use num_traits::{FromPrimitive, Num, ToPrimitive};
use std::marker::PhantomData;

/// Median filter, given a region to move over the image, each pixel is given
/// the median value of itself and it's neighbours
pub trait MedianFilterExt {
    /// Run the median filter given the region. Median is assumed to be calculated
    /// independently for each channel.
    fn median_filter<E>(&self, region: E) -> Self
    where
        E: IntoDimension<Dim = Ix2>;
}

impl<T> MedianFilterExt for Array3<T>
where
    T: Copy + Clone + FromPrimitive + ToPrimitive + Num + Ord,
{
    fn median_filter<E>(&self, region: E) -> Self
    where
        E: IntoDimension<Dim = Ix2>,
    {
        let shape = region.into_dimension();
        let r_offset = shape[0] / 2;
        let c_offset = shape[1] / 2;
        let region = (shape[0], shape[1], 1);
        let mut result = Array3::<T>::zeros(self.dim());
        Zip::indexed(self.windows(region)).apply(|(i, j, k), window| {
            let mut flat_window = Array::from_iter(window.iter()).mapv(|x| *x);
            if let Some(v) = flat_window.quantile_mut::<Linear>(0.5) {
                result
                    .get_mut([i + r_offset, j + c_offset, k])
                    .map(|r| *r = v);
            }
        });
        result
    }
}

impl<T, C> MedianFilterExt for Image<T, C>
where
    T: Copy + Clone + FromPrimitive + ToPrimitive + Num + Ord,
    C: ColourModel,
{
    fn median_filter<E>(&self, region: E) -> Self
    where
        E: IntoDimension<Dim = Ix2>,
    {
        let data = self.data.median_filter(region);
        Image {
            data,
            model: PhantomData,
        }
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use crate::core::colour_models::{Gray, RGB};

    #[test]
    fn simple_median() {
        let mut pixels = Vec::<u8>::new();
        for i in 0..9 {
            pixels.extend_from_slice(&[i, i + 1, i + 2]);
        }
        let image = Image::<_, RGB>::from_shape_data(3, 3, pixels);

        let image = image.median_filter((3, 3));

        let mut expected = Image::<u8, RGB>::new(3, 3);
        expected.pixel_mut(1, 1).assign(&arr1(&[4, 5, 6]));

        assert_eq!(image, expected);
    }

    #[test]
    fn row_median() {
        let pixels = vec![1, 2, 3, 4, 5, 6, 7];
        let image = Image::<_, Gray>::from_shape_data(7, 1, pixels);
        let image = image.median_filter((3, 1));

        let expected_pixels = vec![0, 2, 3, 4, 5, 6, 0];
        let expected = Image::<_, Gray>::from_shape_data(7, 1, expected_pixels);

        assert_eq!(image, expected);
    }
}