1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
//! Summary statistics (e.g. mean, variance, etc.).
use crate::errors::EmptyInput;
use ndarray::{Data, Dimension};
use num_traits::{Float, FromPrimitive, Zero};
use std::ops::{Add, Div};

/// Extension trait for `ArrayBase` providing methods
/// to compute several summary statistics (e.g. mean, variance, etc.).
pub trait SummaryStatisticsExt<A, S, D>
where
    S: Data<Elem = A>,
    D: Dimension,
{
    /// Returns the [`arithmetic mean`] x̅ of all elements in the array:
    ///
    /// ```text
    ///     1   n
    /// x̅ = ―   ∑ xᵢ
    ///     n  i=1
    /// ```
    ///
    /// If the array is empty, `Err(EmptyInput)` is returned.
    ///
    /// **Panics** if `A::from_usize()` fails to convert the number of elements in the array.
    ///
    /// [`arithmetic mean`]: https://en.wikipedia.org/wiki/Arithmetic_mean
    fn mean(&self) -> Result<A, EmptyInput>
    where
        A: Clone + FromPrimitive + Add<Output = A> + Div<Output = A> + Zero;

    /// Returns the [`harmonic mean`] `HM(X)` of all elements in the array:
    ///
    /// ```text
    ///           ⎛ n     ⎞⁻¹
    /// HM(X) = n ⎜ ∑ xᵢ⁻¹⎟
    ///           ⎝i=1    ⎠
    /// ```
    ///
    /// If the array is empty, `Err(EmptyInput)` is returned.
    ///
    /// **Panics** if `A::from_usize()` fails to convert the number of elements in the array.
    ///
    /// [`harmonic mean`]: https://en.wikipedia.org/wiki/Harmonic_mean
    fn harmonic_mean(&self) -> Result<A, EmptyInput>
    where
        A: Float + FromPrimitive;

    /// Returns the [`geometric mean`] `GM(X)` of all elements in the array:
    ///
    /// ```text
    ///         ⎛ n   ⎞¹⁄ₙ
    /// GM(X) = ⎜ ∏ xᵢ⎟
    ///         ⎝i=1  ⎠
    /// ```
    ///
    /// If the array is empty, `Err(EmptyInput)` is returned.
    ///
    /// **Panics** if `A::from_usize()` fails to convert the number of elements in the array.
    ///
    /// [`geometric mean`]: https://en.wikipedia.org/wiki/Geometric_mean
    fn geometric_mean(&self) -> Result<A, EmptyInput>
    where
        A: Float + FromPrimitive;

    /// Returns the [kurtosis] `Kurt[X]` of all elements in the array:
    ///
    /// ```text
    /// Kurt[X] = μ₄ / σ⁴
    /// ```
    ///
    /// where μ₄ is the fourth central moment and σ is the standard deviation of
    /// the elements in the array.
    ///
    /// This is sometimes referred to as _Pearson's kurtosis_. Fisher's kurtosis can be
    /// computed by subtracting 3 from Pearson's kurtosis.
    ///
    /// If the array is empty, `Err(EmptyInput)` is returned.
    ///
    /// **Panics** if `A::from_usize()` fails to convert the number of elements in the array.
    ///
    /// [kurtosis]: https://en.wikipedia.org/wiki/Kurtosis
    fn kurtosis(&self) -> Result<A, EmptyInput>
    where
        A: Float + FromPrimitive;

    /// Returns the [Pearson's moment coefficient of skewness] γ₁ of all elements in the array:
    ///
    /// ```text
    /// γ₁ = μ₃ / σ³
    /// ```
    ///
    /// where μ₃ is the third central moment and σ is the standard deviation of
    /// the elements in the array.
    ///
    /// If the array is empty, `Err(EmptyInput)` is returned.
    ///
    /// **Panics** if `A::from_usize()` fails to convert the number of elements in the array.
    ///
    /// [Pearson's moment coefficient of skewness]: https://en.wikipedia.org/wiki/Skewness
    fn skewness(&self) -> Result<A, EmptyInput>
    where
        A: Float + FromPrimitive;

    /// Returns the *p*-th [central moment] of all elements in the array, μₚ:
    ///
    /// ```text
    ///      1  n
    /// μₚ = ―  ∑ (xᵢ-x̅)ᵖ
    ///      n i=1
    /// ```
    ///
    /// If the array is empty, `Err(EmptyInput)` is returned.
    ///
    /// The *p*-th central moment is computed using a corrected two-pass algorithm (see Section 3.5
    /// in [Pébay et al., 2016]). Complexity is *O(np)* when *n >> p*, *p > 1*.
    ///
    /// **Panics** if `A::from_usize()` fails to convert the number of elements
    /// in the array or if `order` overflows `i32`.
    ///
    /// [central moment]: https://en.wikipedia.org/wiki/Central_moment
    /// [Pébay et al., 2016]: https://www.osti.gov/pages/servlets/purl/1427275
    fn central_moment(&self, order: u16) -> Result<A, EmptyInput>
    where
        A: Float + FromPrimitive;

    /// Returns the first *p* [central moments] of all elements in the array, see [central moment]
    /// for more details.
    ///
    /// If the array is empty, `Err(EmptyInput)` is returned.
    ///
    /// This method reuses the intermediate steps for the *k*-th moment to compute the *(k+1)*-th,
    /// being thus more efficient than repeated calls to [central moment] if the computation
    /// of central moments of multiple orders is required.
    ///
    /// **Panics** if `A::from_usize()` fails to convert the number of elements
    /// in the array or if `order` overflows `i32`.
    ///
    /// [central moments]: https://en.wikipedia.org/wiki/Central_moment
    /// [central moment]: #tymethod.central_moment
    fn central_moments(&self, order: u16) -> Result<Vec<A>, EmptyInput>
    where
        A: Float + FromPrimitive;

    private_decl! {}
}

mod means;