1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610
//! Derivative work of [`core::slice::sort`] licensed under `MIT OR Apache-2.0`.
//!
//! [`core::slice::sort`]: https://doc.rust-lang.org/src/core/slice/sort.rs.html
#![cfg(feature = "alloc")]
use crate::partition::reverse;
use core::{mem, ptr};
use ndarray::{s, ArrayViewMut1, IndexLonger};
/// Inserts `v[0]` into pre-sorted sequence `v[1..]` so that whole `v[..]` becomes sorted.
///
/// This is the integral subroutine of insertion sort.
fn insert_head<T, F>(mut v: ArrayViewMut1<'_, T>, is_less: &mut F)
where
F: FnMut(&T, &T) -> bool,
{
if v.len() >= 2 && is_less(&v[1], &v[0]) {
// SAFETY: Copy tmp back even if panic, and ensure unique observation.
unsafe {
// There are three ways to implement insertion here:
//
// 1. Swap adjacent elements until the first one gets to its final destination.
// However, this way we copy data around more than is necessary. If elements are big
// structures (costly to copy), this method will be slow.
//
// 2. Iterate until the right place for the first element is found. Then shift the
// elements succeeding it to make room for it and finally place it into the
// remaining hole. This is a good method.
//
// 3. Copy the first element into a temporary variable. Iterate until the right place
// for it is found. As we go along, copy every traversed element into the slot
// preceding it. Finally, copy data from the temporary variable into the remaining
// hole. This method is very good. Benchmarks demonstrated slightly better
// performance than with the 2nd method.
//
// All methods were benchmarked, and the 3rd showed best results. So we chose that one.
let tmp = mem::ManuallyDrop::new(ptr::read(&v[0]));
// Intermediate state of the insertion process is always tracked by `hole`, which
// serves two purposes:
// 1. Protects integrity of `v` from panics in `is_less`.
// 2. Fills the remaining hole in `v` in the end.
//
// Panic safety:
//
// If `is_less` panics at any point during the process, `hole` will get dropped and
// fill the hole in `v` with `tmp`, thus ensuring that `v` still holds every object it
// initially held exactly once.
let mut hole = InsertionHole {
src: &*tmp,
dest: &mut v[1],
};
ptr::copy_nonoverlapping(&v[1], &mut v[0], 1);
for i in 2..v.len() {
if !is_less(&v[i], &*tmp) {
break;
}
ptr::copy_nonoverlapping(&v[i], &mut v[i - 1], 1);
hole.dest = &mut v[i];
}
// `hole` gets dropped and thus copies `tmp` into the remaining hole in `v`.
}
}
// When dropped, copies from `src` into `dest`.
struct InsertionHole<T> {
src: *const T,
dest: *mut T,
}
impl<T> Drop for InsertionHole<T> {
fn drop(&mut self) {
// SAFETY: The caller must ensure that src and dest are correctly set.
unsafe {
ptr::copy_nonoverlapping(self.src, self.dest, 1);
}
}
}
}
/// Merges non-decreasing runs `v[..mid]` and `v[mid..]` using `buf` as temporary storage, and
/// stores the result into `v[..]`.
///
/// # Safety
///
/// The two slices must be non-empty and `mid` must be in bounds. Buffer `buf` must be long enough
/// to hold a copy of the shorter slice. Also, `T` must not be a zero-sized type.
#[warn(unsafe_op_in_unsafe_fn)]
unsafe fn merge<T, F>(v: ArrayViewMut1<'_, T>, mid: usize, buf: *mut T, is_less: &mut F)
where
F: FnMut(&T, &T) -> bool,
{
let len = v.len();
//let v = 0;//v.as_mut_ptr();
// SAFETY: mid and len must be in-bounds of v.
//let (v_mid, v_end) = (mid, len);//unsafe { (v.add(mid), v.add(len)) };
// The merge process first copies the shorter run into `buf`. Then it traces the newly copied
// run and the longer run forwards (or backwards), comparing their next unconsumed elements and
// copying the lesser (or greater) one into `v`.
//
// As soon as the shorter run is fully consumed, the process is done. If the longer run gets
// consumed first, then we must copy whatever is left of the shorter run into the remaining
// hole in `v`.
//
// Intermediate state of the process is always tracked by `hole`, which serves two purposes:
// 1. Protects integrity of `v` from panics in `is_less`.
// 2. Fills the remaining hole in `v` if the longer run gets consumed first.
//
// Panic safety:
//
// If `is_less` panics at any point during the process, `hole` will get dropped and fill the
// hole in `v` with the unconsumed range in `buf`, thus ensuring that `v` still holds every
// object it initially held exactly once.
let mut hole;
if mid <= len - mid {
// The left run is shorter.
//let src = v.view_mut().index(0);
// SAFETY: buf must have enough capacity for `v[..mid]`.
unsafe {
for i in 0..mid {
ptr::copy_nonoverlapping(&v[i], buf.add(i), 1);
}
hole = MergeHole {
buf,
start: 0,
end: mid,
dest: 0,
v,
};
}
// Initially, these pointers point to the beginnings of their arrays.
//let left = &mut hole.start;
let mut right = mid; //v_mid
//let out = &mut hole.dest;
while hole.start < hole.end && right < len {
// Consume the lesser side.
// If equal, prefer the left run to maintain stability.
// SAFETY: left and right must be valid and part of v same for out.
unsafe {
let w = hole.v.view();
let to_copy = if is_less(w.uget(right), &*hole.buf.add(hole.start)) {
let idx = &mut right;
let old = hole.v.view_mut().index(*idx);
// SAFETY: ptr.add(1) must still be a valid pointer and part of `v`.
*idx += 1; //unsafe { ptr.add(1) };
old
} else {
let idx = &mut hole.start;
let old = hole.buf.add(*idx);
// SAFETY: ptr.add(1) must still be a valid pointer and part of `v`.
*idx += 1; //unsafe { ptr.add(1) };
old
};
let idx = &mut hole.dest;
let old = hole.v.view_mut().index(*idx);
// SAFETY: ptr.add(1) must still be a valid pointer and part of `v`.
*idx += 1; //unsafe { ptr.add(1) };
let dst = old;
ptr::copy_nonoverlapping(to_copy, dst, 1);
}
}
} else {
// The right run is shorter.
// SAFETY: buf must have enough capacity for `v[mid..]`.
unsafe {
for i in 0..len - mid {
ptr::copy_nonoverlapping(&v[mid + i], buf.add(i), 1);
}
hole = MergeHole {
buf,
start: 0,
end: len - mid,
dest: mid,
v,
};
}
// Initially, these pointers point past the ends of their arrays.
//let left = &mut hole.dest;
//let right = &mut hole.end;
let mut out = len; //v_end;
while 0 < hole.dest && 0 < hole.end {
// Consume the greater side.
// If equal, prefer the right run to maintain stability.
// SAFETY: left and right must be valid and part of v same for out.
unsafe {
let w = hole.v.view();
let to_copy = if is_less(&*hole.buf.add(hole.end - 1), w.uget(hole.dest - 1)) {
let idx = &mut hole.dest;
// SAFETY: ptr.sub(1) must still be a valid pointer and part of `v`.
*idx -= 1; //unsafe { ptr.sub(1) };
hole.v.view_mut().index(*idx)
} else {
let idx = &mut hole.end;
// SAFETY: ptr.sub(1) must still be a valid pointer and part of `v`.
*idx -= 1; //unsafe { ptr.sub(1) };
hole.buf.add(*idx)
};
let idx = &mut out;
// SAFETY: ptr.sub(1) must still be a valid pointer and part of `v`.
*idx -= 1; //unsafe { ptr.sub(1) };
let dst = hole.v.view_mut().index(*idx);
ptr::copy_nonoverlapping(to_copy, dst, 1);
}
}
}
// Finally, `hole` gets dropped. If the shorter run was not fully consumed, whatever remains of
// it will now be copied into the hole in `v`.
// When dropped, copies the range `start..end` into `dest..`.
struct MergeHole<'a, T> {
buf: *mut T,
start: usize,
end: usize,
v: ArrayViewMut1<'a, T>,
dest: usize,
}
//impl<'a, T> MergeHole<'a, T> {
// unsafe fn buf_get_and_increment(&mut self, idx: &mut usize) -> *mut T {
// let old = self.buf.add(*idx);
// // SAFETY: ptr.add(1) must still be a valid pointer and part of `v`.
// *idx = *idx + 1;//unsafe { ptr.add(1) };
// old
// }
// unsafe fn buf_decrement_and_get(&mut self, idx: &mut usize) -> *mut T {
// // SAFETY: ptr.sub(1) must still be a valid pointer and part of `v`.
// *idx = *idx - 1;//unsafe { ptr.sub(1) };
// self.buf.add(*idx)
// }
// unsafe fn out_get_and_increment(&mut self, idx: &mut usize) -> *mut T {
// let old = self.v.view_mut().index(*idx);
// // SAFETY: ptr.add(1) must still be a valid pointer and part of `v`.
// *idx = *idx + 1;//unsafe { ptr.add(1) };
// old
// }
// unsafe fn out_decrement_and_get(&mut self, idx: &mut usize) -> *mut T {
// // SAFETY: ptr.sub(1) must still be a valid pointer and part of `v`.
// *idx = *idx - 1;//unsafe { ptr.sub(1) };
// self.v.view_mut().index(*idx)
// }
//}
impl<'a, T> Drop for MergeHole<'a, T> {
fn drop(&mut self) {
// SAFETY: `T` is not a zero-sized type, and these are pointers into a slice's elements.
unsafe {
let len = self.end - self.start; //self.end.sub_ptr(self.start);
for i in 0..len {
let src = self.buf.add(self.start + i);
let dst = self.v.view_mut().index(self.dest + i);
ptr::copy_nonoverlapping(src, dst, 1);
}
}
}
}
}
/// This merge sort borrows some (but not all) ideas from TimSort, which used to be described in
/// detail [here](https://github.com/python/cpython/blob/main/Objects/listsort.txt). However Python
/// has switched to a Powersort based implementation.
///
/// The algorithm identifies strictly descending and non-descending subsequences, which are called
/// natural runs. There is a stack of pending runs yet to be merged. Each newly found run is pushed
/// onto the stack, and then some pairs of adjacent runs are merged until these two invariants are
/// satisfied:
///
/// 1. for every `i` in `1..runs.len()`: `runs[i - 1].len > runs[i].len`
/// 2. for every `i` in `2..runs.len()`: `runs[i - 2].len > runs[i - 1].len + runs[i].len`
///
/// The invariants ensure that the total running time is *O*(*n* \* log(*n*)) worst-case.
pub fn merge_sort<T, CmpF, ElemAllocF, ElemDeallocF, RunAllocF, RunDeallocF>(
mut v: ArrayViewMut1<'_, T>,
is_less: &mut CmpF,
elem_alloc_fn: ElemAllocF,
elem_dealloc_fn: ElemDeallocF,
run_alloc_fn: RunAllocF,
run_dealloc_fn: RunDeallocF,
) where
CmpF: FnMut(&T, &T) -> bool,
ElemAllocF: Fn(usize) -> *mut T,
ElemDeallocF: Fn(*mut T, usize),
RunAllocF: Fn(usize) -> *mut TimSortRun,
RunDeallocF: Fn(*mut TimSortRun, usize),
{
// Slices of up to this length get sorted using insertion sort.
const MAX_INSERTION: usize = 20;
// Very short runs are extended using insertion sort to span at least this many elements.
const MIN_RUN: usize = 10;
// The caller should have already checked that.
debug_assert!(mem::size_of::<T>() > 0);
let len = v.len();
// Short arrays get sorted in-place via insertion sort to avoid allocations.
if len <= MAX_INSERTION {
if len >= 2 {
for i in (0..len - 1).rev() {
insert_head(v.slice_mut(s![i..]), is_less);
}
}
return;
}
// Allocate a buffer to use as scratch memory. We keep the length 0 so we can keep in it
// shallow copies of the contents of `v` without risking the dtors running on copies if
// `is_less` panics. When merging two sorted runs, this buffer holds a copy of the shorter run,
// which will always have length at most `len / 2`.
let buf = BufGuard::new(len / 2, elem_alloc_fn, elem_dealloc_fn);
let buf_ptr = buf.buf_ptr;
let mut runs = RunVec::new(run_alloc_fn, run_dealloc_fn);
// In order to identify natural runs in `v`, we traverse it backwards. That might seem like a
// strange decision, but consider the fact that merges more often go in the opposite direction
// (forwards). According to benchmarks, merging forwards is slightly faster than merging
// backwards. To conclude, identifying runs by traversing backwards improves performance.
let mut end = len;
while end > 0 {
// Find the next natural run, and reverse it if it's strictly descending.
let mut start = end - 1;
if start > 0 {
start -= 1;
// SAFETY: The v.get_unchecked must be fed with correct inbound indicies.
unsafe {
let w = v.view();
if is_less(w.uget(start + 1), w.uget(start)) {
while start > 0 && is_less(w.uget(start), w.uget(start - 1)) {
start -= 1;
}
reverse(v.slice_mut(s![start..end]));
} else {
let w = v.view();
while start > 0 && !is_less(w.uget(start), w.uget(start - 1)) {
start -= 1;
}
}
}
}
// Insert some more elements into the run if it's too short. Insertion sort is faster than
// merge sort on short sequences, so this significantly improves performance.
while start > 0 && end - start < MIN_RUN {
start -= 1;
insert_head(v.slice_mut(s![start..end]), is_less);
}
// Push this run onto the stack.
runs.push(TimSortRun {
start,
len: end - start,
});
end = start;
// Merge some pairs of adjacent runs to satisfy the invariants.
while let Some(r) = collapse(runs.as_slice()) {
let left = runs[r + 1];
let right = runs[r];
// SAFETY: `buf_ptr` must hold enough capacity for the shorter of the two sides, and
// neither side may be on length 0.
unsafe {
merge(
v.slice_mut(s![left.start..right.start + right.len]),
left.len,
buf_ptr,
is_less,
);
}
runs[r] = TimSortRun {
start: left.start,
len: left.len + right.len,
};
runs.remove(r + 1);
}
}
// Finally, exactly one run must remain in the stack.
debug_assert!(runs.len() == 1 && runs[0].start == 0 && runs[0].len == len);
// Examines the stack of runs and identifies the next pair of runs to merge. More specifically,
// if `Some(r)` is returned, that means `runs[r]` and `runs[r + 1]` must be merged next. If the
// algorithm should continue building a new run instead, `None` is returned.
//
// TimSort is infamous for its buggy implementations, as described here:
// http://envisage-project.eu/timsort-specification-and-verification/
//
// The gist of the story is: we must enforce the invariants on the top four runs on the stack.
// Enforcing them on just top three is not sufficient to ensure that the invariants will still
// hold for *all* runs in the stack.
//
// This function correctly checks invariants for the top four runs. Additionally, if the top
// run starts at index 0, it will always demand a merge operation until the stack is fully
// collapsed, in order to complete the sort.
#[inline]
fn collapse(runs: &[TimSortRun]) -> Option<usize> {
let n = runs.len();
if n >= 2
&& (runs[n - 1].start == 0
|| runs[n - 2].len <= runs[n - 1].len
|| (n >= 3 && runs[n - 3].len <= runs[n - 2].len + runs[n - 1].len)
|| (n >= 4 && runs[n - 4].len <= runs[n - 3].len + runs[n - 2].len))
{
if n >= 3 && runs[n - 3].len < runs[n - 1].len {
Some(n - 3)
} else {
Some(n - 2)
}
} else {
None
}
}
// Extremely basic versions of Vec.
// Their use is super limited and by having the code here, it allows reuse between the sort
// implementations.
struct BufGuard<T, ElemDeallocF>
where
ElemDeallocF: Fn(*mut T, usize),
{
buf_ptr: *mut T,
capacity: usize,
elem_dealloc_fn: ElemDeallocF,
}
impl<T, ElemDeallocF> BufGuard<T, ElemDeallocF>
where
ElemDeallocF: Fn(*mut T, usize),
{
fn new<ElemAllocF>(
len: usize,
elem_alloc_fn: ElemAllocF,
elem_dealloc_fn: ElemDeallocF,
) -> Self
where
ElemAllocF: Fn(usize) -> *mut T,
{
Self {
buf_ptr: elem_alloc_fn(len),
capacity: len,
elem_dealloc_fn,
}
}
}
impl<T, ElemDeallocF> Drop for BufGuard<T, ElemDeallocF>
where
ElemDeallocF: Fn(*mut T, usize),
{
fn drop(&mut self) {
(self.elem_dealloc_fn)(self.buf_ptr, self.capacity);
}
}
struct RunVec<RunAllocF, RunDeallocF>
where
RunAllocF: Fn(usize) -> *mut TimSortRun,
RunDeallocF: Fn(*mut TimSortRun, usize),
{
buf_ptr: *mut TimSortRun,
capacity: usize,
len: usize,
run_alloc_fn: RunAllocF,
run_dealloc_fn: RunDeallocF,
}
impl<RunAllocF, RunDeallocF> RunVec<RunAllocF, RunDeallocF>
where
RunAllocF: Fn(usize) -> *mut TimSortRun,
RunDeallocF: Fn(*mut TimSortRun, usize),
{
fn new(run_alloc_fn: RunAllocF, run_dealloc_fn: RunDeallocF) -> Self {
// Most slices can be sorted with at most 16 runs in-flight.
const START_RUN_CAPACITY: usize = 16;
Self {
buf_ptr: run_alloc_fn(START_RUN_CAPACITY),
capacity: START_RUN_CAPACITY,
len: 0,
run_alloc_fn,
run_dealloc_fn,
}
}
fn push(&mut self, val: TimSortRun) {
if self.len == self.capacity {
let old_capacity = self.capacity;
let old_buf_ptr = self.buf_ptr;
self.capacity *= 2;
self.buf_ptr = (self.run_alloc_fn)(self.capacity);
// SAFETY: buf_ptr new and old were correctly allocated and old_buf_ptr has
// old_capacity valid elements.
unsafe {
ptr::copy_nonoverlapping(old_buf_ptr, self.buf_ptr, old_capacity);
}
(self.run_dealloc_fn)(old_buf_ptr, old_capacity);
}
// SAFETY: The invariant was just checked.
unsafe {
self.buf_ptr.add(self.len).write(val);
}
self.len += 1;
}
fn remove(&mut self, index: usize) {
if index >= self.len {
panic!("Index out of bounds");
}
// SAFETY: buf_ptr needs to be valid and len invariant upheld.
unsafe {
// the place we are taking from.
let ptr = self.buf_ptr.add(index);
// Shift everything down to fill in that spot.
ptr::copy(ptr.add(1), ptr, self.len - index - 1);
}
self.len -= 1;
}
fn as_slice(&self) -> &[TimSortRun] {
// SAFETY: Safe as long as buf_ptr is valid and len invariant was upheld.
unsafe { &*ptr::slice_from_raw_parts(self.buf_ptr, self.len) }
}
fn len(&self) -> usize {
self.len
}
}
impl<RunAllocF, RunDeallocF> core::ops::Index<usize> for RunVec<RunAllocF, RunDeallocF>
where
RunAllocF: Fn(usize) -> *mut TimSortRun,
RunDeallocF: Fn(*mut TimSortRun, usize),
{
type Output = TimSortRun;
fn index(&self, index: usize) -> &Self::Output {
if index < self.len {
// SAFETY: buf_ptr and len invariant must be upheld.
unsafe {
return &*(self.buf_ptr.add(index));
}
}
panic!("Index out of bounds");
}
}
impl<RunAllocF, RunDeallocF> core::ops::IndexMut<usize> for RunVec<RunAllocF, RunDeallocF>
where
RunAllocF: Fn(usize) -> *mut TimSortRun,
RunDeallocF: Fn(*mut TimSortRun, usize),
{
fn index_mut(&mut self, index: usize) -> &mut Self::Output {
if index < self.len {
// SAFETY: buf_ptr and len invariant must be upheld.
unsafe {
return &mut *(self.buf_ptr.add(index));
}
}
panic!("Index out of bounds");
}
}
impl<RunAllocF, RunDeallocF> Drop for RunVec<RunAllocF, RunDeallocF>
where
RunAllocF: Fn(usize) -> *mut TimSortRun,
RunDeallocF: Fn(*mut TimSortRun, usize),
{
fn drop(&mut self) {
// As long as TimSortRun is Copy we don't need to drop them individually but just the
// whole allocation.
(self.run_dealloc_fn)(self.buf_ptr, self.capacity);
}
}
}
/// Internal type used by merge_sort.
#[derive(Clone, Copy, Debug)]
pub struct TimSortRun {
len: usize,
start: usize,
}