1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
//! Derivative work of [`core::slice::sort`] licensed under `MIT OR Apache-2.0`.
//!
//! [`core::slice::sort`]: https://doc.rust-lang.org/src/core/slice/sort.rs.html

#![cfg(feature = "alloc")]

use crate::partition::reverse;
use core::{mem, ptr};
use ndarray::{s, ArrayViewMut1, IndexLonger};

/// Inserts `v[0]` into pre-sorted sequence `v[1..]` so that whole `v[..]` becomes sorted.
///
/// This is the integral subroutine of insertion sort.
fn insert_head<T, F>(mut v: ArrayViewMut1<'_, T>, is_less: &mut F)
where
	F: FnMut(&T, &T) -> bool,
{
	if v.len() >= 2 && is_less(&v[1], &v[0]) {
		// SAFETY: Copy tmp back even if panic, and ensure unique observation.
		unsafe {
			// There are three ways to implement insertion here:
			//
			// 1. Swap adjacent elements until the first one gets to its final destination.
			//    However, this way we copy data around more than is necessary. If elements are big
			//    structures (costly to copy), this method will be slow.
			//
			// 2. Iterate until the right place for the first element is found. Then shift the
			//    elements succeeding it to make room for it and finally place it into the
			//    remaining hole. This is a good method.
			//
			// 3. Copy the first element into a temporary variable. Iterate until the right place
			//    for it is found. As we go along, copy every traversed element into the slot
			//    preceding it. Finally, copy data from the temporary variable into the remaining
			//    hole. This method is very good. Benchmarks demonstrated slightly better
			//    performance than with the 2nd method.
			//
			// All methods were benchmarked, and the 3rd showed best results. So we chose that one.
			let tmp = mem::ManuallyDrop::new(ptr::read(&v[0]));

			// Intermediate state of the insertion process is always tracked by `hole`, which
			// serves two purposes:
			// 1. Protects integrity of `v` from panics in `is_less`.
			// 2. Fills the remaining hole in `v` in the end.
			//
			// Panic safety:
			//
			// If `is_less` panics at any point during the process, `hole` will get dropped and
			// fill the hole in `v` with `tmp`, thus ensuring that `v` still holds every object it
			// initially held exactly once.
			let mut hole = InsertionHole {
				src: &*tmp,
				dest: &mut v[1],
			};
			ptr::copy_nonoverlapping(&v[1], &mut v[0], 1);

			for i in 2..v.len() {
				if !is_less(&v[i], &*tmp) {
					break;
				}
				ptr::copy_nonoverlapping(&v[i], &mut v[i - 1], 1);
				hole.dest = &mut v[i];
			}
			// `hole` gets dropped and thus copies `tmp` into the remaining hole in `v`.
		}
	}

	// When dropped, copies from `src` into `dest`.
	struct InsertionHole<T> {
		src: *const T,
		dest: *mut T,
	}

	impl<T> Drop for InsertionHole<T> {
		fn drop(&mut self) {
			// SAFETY: The caller must ensure that src and dest are correctly set.
			unsafe {
				ptr::copy_nonoverlapping(self.src, self.dest, 1);
			}
		}
	}
}

/// Merges non-decreasing runs `v[..mid]` and `v[mid..]` using `buf` as temporary storage, and
/// stores the result into `v[..]`.
///
/// # Safety
///
/// The two slices must be non-empty and `mid` must be in bounds. Buffer `buf` must be long enough
/// to hold a copy of the shorter slice. Also, `T` must not be a zero-sized type.
#[warn(unsafe_op_in_unsafe_fn)]
unsafe fn merge<T, F>(v: ArrayViewMut1<'_, T>, mid: usize, buf: *mut T, is_less: &mut F)
where
	F: FnMut(&T, &T) -> bool,
{
	let len = v.len();
	//let v = 0;//v.as_mut_ptr();

	// SAFETY: mid and len must be in-bounds of v.
	//let (v_mid, v_end) = (mid, len);//unsafe { (v.add(mid), v.add(len)) };

	// The merge process first copies the shorter run into `buf`. Then it traces the newly copied
	// run and the longer run forwards (or backwards), comparing their next unconsumed elements and
	// copying the lesser (or greater) one into `v`.
	//
	// As soon as the shorter run is fully consumed, the process is done. If the longer run gets
	// consumed first, then we must copy whatever is left of the shorter run into the remaining
	// hole in `v`.
	//
	// Intermediate state of the process is always tracked by `hole`, which serves two purposes:
	// 1. Protects integrity of `v` from panics in `is_less`.
	// 2. Fills the remaining hole in `v` if the longer run gets consumed first.
	//
	// Panic safety:
	//
	// If `is_less` panics at any point during the process, `hole` will get dropped and fill the
	// hole in `v` with the unconsumed range in `buf`, thus ensuring that `v` still holds every
	// object it initially held exactly once.
	let mut hole;

	if mid <= len - mid {
		// The left run is shorter.

		//let src = v.view_mut().index(0);
		// SAFETY: buf must have enough capacity for `v[..mid]`.
		unsafe {
			for i in 0..mid {
				ptr::copy_nonoverlapping(&v[i], buf.add(i), 1);
			}
			hole = MergeHole {
				buf,
				start: 0,
				end: mid,
				dest: 0,
				v,
			};
		}

		// Initially, these pointers point to the beginnings of their arrays.
		//let left = &mut hole.start;
		let mut right = mid; //v_mid
					 //let out = &mut hole.dest;

		while hole.start < hole.end && right < len {
			// Consume the lesser side.
			// If equal, prefer the left run to maintain stability.

			// SAFETY: left and right must be valid and part of v same for out.
			unsafe {
				let w = hole.v.view();
				let to_copy = if is_less(w.uget(right), &*hole.buf.add(hole.start)) {
					let idx = &mut right;
					let old = hole.v.view_mut().index(*idx);

					// SAFETY: ptr.add(1) must still be a valid pointer and part of `v`.
					*idx += 1; //unsafe { ptr.add(1) };
					old
				} else {
					let idx = &mut hole.start;
					let old = hole.buf.add(*idx);

					// SAFETY: ptr.add(1) must still be a valid pointer and part of `v`.
					*idx += 1; //unsafe { ptr.add(1) };
					old
				};
				let idx = &mut hole.dest;
				let old = hole.v.view_mut().index(*idx);

				// SAFETY: ptr.add(1) must still be a valid pointer and part of `v`.
				*idx += 1; //unsafe { ptr.add(1) };
				let dst = old;
				ptr::copy_nonoverlapping(to_copy, dst, 1);
			}
		}
	} else {
		// The right run is shorter.

		// SAFETY: buf must have enough capacity for `v[mid..]`.
		unsafe {
			for i in 0..len - mid {
				ptr::copy_nonoverlapping(&v[mid + i], buf.add(i), 1);
			}
			hole = MergeHole {
				buf,
				start: 0,
				end: len - mid,
				dest: mid,
				v,
			};
		}

		// Initially, these pointers point past the ends of their arrays.
		//let left = &mut hole.dest;
		//let right = &mut hole.end;
		let mut out = len; //v_end;

		while 0 < hole.dest && 0 < hole.end {
			// Consume the greater side.
			// If equal, prefer the right run to maintain stability.

			// SAFETY: left and right must be valid and part of v same for out.
			unsafe {
				let w = hole.v.view();
				let to_copy = if is_less(&*hole.buf.add(hole.end - 1), w.uget(hole.dest - 1)) {
					let idx = &mut hole.dest;
					// SAFETY: ptr.sub(1) must still be a valid pointer and part of `v`.
					*idx -= 1; //unsafe { ptr.sub(1) };
					hole.v.view_mut().index(*idx)
				} else {
					let idx = &mut hole.end;
					// SAFETY: ptr.sub(1) must still be a valid pointer and part of `v`.
					*idx -= 1; //unsafe { ptr.sub(1) };
					hole.buf.add(*idx)
				};
				let idx = &mut out;
				// SAFETY: ptr.sub(1) must still be a valid pointer and part of `v`.
				*idx -= 1; //unsafe { ptr.sub(1) };
				let dst = hole.v.view_mut().index(*idx);
				ptr::copy_nonoverlapping(to_copy, dst, 1);
			}
		}
	}
	// Finally, `hole` gets dropped. If the shorter run was not fully consumed, whatever remains of
	// it will now be copied into the hole in `v`.

	// When dropped, copies the range `start..end` into `dest..`.
	struct MergeHole<'a, T> {
		buf: *mut T,
		start: usize,
		end: usize,

		v: ArrayViewMut1<'a, T>,
		dest: usize,
	}
	//impl<'a, T> MergeHole<'a, T> {
	//    unsafe fn buf_get_and_increment(&mut self, idx: &mut usize) -> *mut T {
	//        let old = self.buf.add(*idx);

	//        // SAFETY: ptr.add(1) must still be a valid pointer and part of `v`.
	//        *idx = *idx + 1;//unsafe { ptr.add(1) };
	//        old
	//    }

	//    unsafe fn buf_decrement_and_get(&mut self, idx: &mut usize) -> *mut T {
	//        // SAFETY: ptr.sub(1) must still be a valid pointer and part of `v`.
	//        *idx = *idx - 1;//unsafe { ptr.sub(1) };
	//        self.buf.add(*idx)
	//    }

	//    unsafe fn out_get_and_increment(&mut self, idx: &mut usize) -> *mut T {
	//        let old = self.v.view_mut().index(*idx);

	//        // SAFETY: ptr.add(1) must still be a valid pointer and part of `v`.
	//        *idx = *idx + 1;//unsafe { ptr.add(1) };
	//        old
	//    }

	//    unsafe fn out_decrement_and_get(&mut self, idx: &mut usize) -> *mut T {
	//        // SAFETY: ptr.sub(1) must still be a valid pointer and part of `v`.
	//        *idx = *idx - 1;//unsafe { ptr.sub(1) };
	//        self.v.view_mut().index(*idx)
	//    }
	//}

	impl<'a, T> Drop for MergeHole<'a, T> {
		fn drop(&mut self) {
			// SAFETY: `T` is not a zero-sized type, and these are pointers into a slice's elements.
			unsafe {
				let len = self.end - self.start; //self.end.sub_ptr(self.start);
				for i in 0..len {
					let src = self.buf.add(self.start + i);
					let dst = self.v.view_mut().index(self.dest + i);
					ptr::copy_nonoverlapping(src, dst, 1);
				}
			}
		}
	}
}

/// This merge sort borrows some (but not all) ideas from TimSort, which used to be described in
/// detail [here](https://github.com/python/cpython/blob/main/Objects/listsort.txt). However Python
/// has switched to a Powersort based implementation.
///
/// The algorithm identifies strictly descending and non-descending subsequences, which are called
/// natural runs. There is a stack of pending runs yet to be merged. Each newly found run is pushed
/// onto the stack, and then some pairs of adjacent runs are merged until these two invariants are
/// satisfied:
///
/// 1. for every `i` in `1..runs.len()`: `runs[i - 1].len > runs[i].len`
/// 2. for every `i` in `2..runs.len()`: `runs[i - 2].len > runs[i - 1].len + runs[i].len`
///
/// The invariants ensure that the total running time is *O*(*n* \* log(*n*)) worst-case.
pub fn merge_sort<T, CmpF, ElemAllocF, ElemDeallocF, RunAllocF, RunDeallocF>(
	mut v: ArrayViewMut1<'_, T>,
	is_less: &mut CmpF,
	elem_alloc_fn: ElemAllocF,
	elem_dealloc_fn: ElemDeallocF,
	run_alloc_fn: RunAllocF,
	run_dealloc_fn: RunDeallocF,
) where
	CmpF: FnMut(&T, &T) -> bool,
	ElemAllocF: Fn(usize) -> *mut T,
	ElemDeallocF: Fn(*mut T, usize),
	RunAllocF: Fn(usize) -> *mut TimSortRun,
	RunDeallocF: Fn(*mut TimSortRun, usize),
{
	// Slices of up to this length get sorted using insertion sort.
	const MAX_INSERTION: usize = 20;
	// Very short runs are extended using insertion sort to span at least this many elements.
	const MIN_RUN: usize = 10;

	// The caller should have already checked that.
	debug_assert!(mem::size_of::<T>() > 0);

	let len = v.len();

	// Short arrays get sorted in-place via insertion sort to avoid allocations.
	if len <= MAX_INSERTION {
		if len >= 2 {
			for i in (0..len - 1).rev() {
				insert_head(v.slice_mut(s![i..]), is_less);
			}
		}
		return;
	}

	// Allocate a buffer to use as scratch memory. We keep the length 0 so we can keep in it
	// shallow copies of the contents of `v` without risking the dtors running on copies if
	// `is_less` panics. When merging two sorted runs, this buffer holds a copy of the shorter run,
	// which will always have length at most `len / 2`.
	let buf = BufGuard::new(len / 2, elem_alloc_fn, elem_dealloc_fn);
	let buf_ptr = buf.buf_ptr;

	let mut runs = RunVec::new(run_alloc_fn, run_dealloc_fn);

	// In order to identify natural runs in `v`, we traverse it backwards. That might seem like a
	// strange decision, but consider the fact that merges more often go in the opposite direction
	// (forwards). According to benchmarks, merging forwards is slightly faster than merging
	// backwards. To conclude, identifying runs by traversing backwards improves performance.
	let mut end = len;
	while end > 0 {
		// Find the next natural run, and reverse it if it's strictly descending.
		let mut start = end - 1;
		if start > 0 {
			start -= 1;

			// SAFETY: The v.get_unchecked must be fed with correct inbound indicies.
			unsafe {
				let w = v.view();
				if is_less(w.uget(start + 1), w.uget(start)) {
					while start > 0 && is_less(w.uget(start), w.uget(start - 1)) {
						start -= 1;
					}
					reverse(v.slice_mut(s![start..end]));
				} else {
					let w = v.view();
					while start > 0 && !is_less(w.uget(start), w.uget(start - 1)) {
						start -= 1;
					}
				}
			}
		}

		// Insert some more elements into the run if it's too short. Insertion sort is faster than
		// merge sort on short sequences, so this significantly improves performance.
		while start > 0 && end - start < MIN_RUN {
			start -= 1;
			insert_head(v.slice_mut(s![start..end]), is_less);
		}

		// Push this run onto the stack.
		runs.push(TimSortRun {
			start,
			len: end - start,
		});
		end = start;

		// Merge some pairs of adjacent runs to satisfy the invariants.
		while let Some(r) = collapse(runs.as_slice()) {
			let left = runs[r + 1];
			let right = runs[r];
			// SAFETY: `buf_ptr` must hold enough capacity for the shorter of the two sides, and
			// neither side may be on length 0.
			unsafe {
				merge(
					v.slice_mut(s![left.start..right.start + right.len]),
					left.len,
					buf_ptr,
					is_less,
				);
			}
			runs[r] = TimSortRun {
				start: left.start,
				len: left.len + right.len,
			};
			runs.remove(r + 1);
		}
	}

	// Finally, exactly one run must remain in the stack.
	debug_assert!(runs.len() == 1 && runs[0].start == 0 && runs[0].len == len);

	// Examines the stack of runs and identifies the next pair of runs to merge. More specifically,
	// if `Some(r)` is returned, that means `runs[r]` and `runs[r + 1]` must be merged next. If the
	// algorithm should continue building a new run instead, `None` is returned.
	//
	// TimSort is infamous for its buggy implementations, as described here:
	// http://envisage-project.eu/timsort-specification-and-verification/
	//
	// The gist of the story is: we must enforce the invariants on the top four runs on the stack.
	// Enforcing them on just top three is not sufficient to ensure that the invariants will still
	// hold for *all* runs in the stack.
	//
	// This function correctly checks invariants for the top four runs. Additionally, if the top
	// run starts at index 0, it will always demand a merge operation until the stack is fully
	// collapsed, in order to complete the sort.
	#[inline]
	fn collapse(runs: &[TimSortRun]) -> Option<usize> {
		let n = runs.len();
		if n >= 2
			&& (runs[n - 1].start == 0
				|| runs[n - 2].len <= runs[n - 1].len
				|| (n >= 3 && runs[n - 3].len <= runs[n - 2].len + runs[n - 1].len)
				|| (n >= 4 && runs[n - 4].len <= runs[n - 3].len + runs[n - 2].len))
		{
			if n >= 3 && runs[n - 3].len < runs[n - 1].len {
				Some(n - 3)
			} else {
				Some(n - 2)
			}
		} else {
			None
		}
	}

	// Extremely basic versions of Vec.
	// Their use is super limited and by having the code here, it allows reuse between the sort
	// implementations.
	struct BufGuard<T, ElemDeallocF>
	where
		ElemDeallocF: Fn(*mut T, usize),
	{
		buf_ptr: *mut T,
		capacity: usize,
		elem_dealloc_fn: ElemDeallocF,
	}

	impl<T, ElemDeallocF> BufGuard<T, ElemDeallocF>
	where
		ElemDeallocF: Fn(*mut T, usize),
	{
		fn new<ElemAllocF>(
			len: usize,
			elem_alloc_fn: ElemAllocF,
			elem_dealloc_fn: ElemDeallocF,
		) -> Self
		where
			ElemAllocF: Fn(usize) -> *mut T,
		{
			Self {
				buf_ptr: elem_alloc_fn(len),
				capacity: len,
				elem_dealloc_fn,
			}
		}
	}

	impl<T, ElemDeallocF> Drop for BufGuard<T, ElemDeallocF>
	where
		ElemDeallocF: Fn(*mut T, usize),
	{
		fn drop(&mut self) {
			(self.elem_dealloc_fn)(self.buf_ptr, self.capacity);
		}
	}

	struct RunVec<RunAllocF, RunDeallocF>
	where
		RunAllocF: Fn(usize) -> *mut TimSortRun,
		RunDeallocF: Fn(*mut TimSortRun, usize),
	{
		buf_ptr: *mut TimSortRun,
		capacity: usize,
		len: usize,
		run_alloc_fn: RunAllocF,
		run_dealloc_fn: RunDeallocF,
	}

	impl<RunAllocF, RunDeallocF> RunVec<RunAllocF, RunDeallocF>
	where
		RunAllocF: Fn(usize) -> *mut TimSortRun,
		RunDeallocF: Fn(*mut TimSortRun, usize),
	{
		fn new(run_alloc_fn: RunAllocF, run_dealloc_fn: RunDeallocF) -> Self {
			// Most slices can be sorted with at most 16 runs in-flight.
			const START_RUN_CAPACITY: usize = 16;

			Self {
				buf_ptr: run_alloc_fn(START_RUN_CAPACITY),
				capacity: START_RUN_CAPACITY,
				len: 0,
				run_alloc_fn,
				run_dealloc_fn,
			}
		}

		fn push(&mut self, val: TimSortRun) {
			if self.len == self.capacity {
				let old_capacity = self.capacity;
				let old_buf_ptr = self.buf_ptr;

				self.capacity *= 2;
				self.buf_ptr = (self.run_alloc_fn)(self.capacity);

				// SAFETY: buf_ptr new and old were correctly allocated and old_buf_ptr has
				// old_capacity valid elements.
				unsafe {
					ptr::copy_nonoverlapping(old_buf_ptr, self.buf_ptr, old_capacity);
				}

				(self.run_dealloc_fn)(old_buf_ptr, old_capacity);
			}

			// SAFETY: The invariant was just checked.
			unsafe {
				self.buf_ptr.add(self.len).write(val);
			}
			self.len += 1;
		}

		fn remove(&mut self, index: usize) {
			if index >= self.len {
				panic!("Index out of bounds");
			}

			// SAFETY: buf_ptr needs to be valid and len invariant upheld.
			unsafe {
				// the place we are taking from.
				let ptr = self.buf_ptr.add(index);

				// Shift everything down to fill in that spot.
				ptr::copy(ptr.add(1), ptr, self.len - index - 1);
			}
			self.len -= 1;
		}

		fn as_slice(&self) -> &[TimSortRun] {
			// SAFETY: Safe as long as buf_ptr is valid and len invariant was upheld.
			unsafe { &*ptr::slice_from_raw_parts(self.buf_ptr, self.len) }
		}

		fn len(&self) -> usize {
			self.len
		}
	}

	impl<RunAllocF, RunDeallocF> core::ops::Index<usize> for RunVec<RunAllocF, RunDeallocF>
	where
		RunAllocF: Fn(usize) -> *mut TimSortRun,
		RunDeallocF: Fn(*mut TimSortRun, usize),
	{
		type Output = TimSortRun;

		fn index(&self, index: usize) -> &Self::Output {
			if index < self.len {
				// SAFETY: buf_ptr and len invariant must be upheld.
				unsafe {
					return &*(self.buf_ptr.add(index));
				}
			}

			panic!("Index out of bounds");
		}
	}

	impl<RunAllocF, RunDeallocF> core::ops::IndexMut<usize> for RunVec<RunAllocF, RunDeallocF>
	where
		RunAllocF: Fn(usize) -> *mut TimSortRun,
		RunDeallocF: Fn(*mut TimSortRun, usize),
	{
		fn index_mut(&mut self, index: usize) -> &mut Self::Output {
			if index < self.len {
				// SAFETY: buf_ptr and len invariant must be upheld.
				unsafe {
					return &mut *(self.buf_ptr.add(index));
				}
			}

			panic!("Index out of bounds");
		}
	}

	impl<RunAllocF, RunDeallocF> Drop for RunVec<RunAllocF, RunDeallocF>
	where
		RunAllocF: Fn(usize) -> *mut TimSortRun,
		RunDeallocF: Fn(*mut TimSortRun, usize),
	{
		fn drop(&mut self) {
			// As long as TimSortRun is Copy we don't need to drop them individually but just the
			// whole allocation.
			(self.run_dealloc_fn)(self.buf_ptr, self.capacity);
		}
	}
}

/// Internal type used by merge_sort.
#[derive(Clone, Copy, Debug)]
pub struct TimSortRun {
	len: usize,
	start: usize,
}