1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
use ndarray::*;
use ndarray_linalg::Scalar;
use super::traits::*;
pub struct Diagonal<A, S, D>
where A: Scalar,
S: Data<Elem = A>,
D: Dimension
{
diag: ArrayBase<S, D>,
diag_of_matrix: ArrayBase<S, D>,
dt: A::Real,
}
impl<A, S, D> TimeStep for Diagonal<A, S, D>
where A: Scalar,
S: DataMut<Elem = A>,
D: Dimension
{
type Time = A::Real;
fn get_dt(&self) -> Self::Time {
self.dt
}
fn set_dt(&mut self, dt: Self::Time) {
Zip::from(&mut self.diag)
.and(&self.diag_of_matrix)
.apply(|a, &b| { *a = b.mul_real(dt).exp(); });
}
}
impl<A, S, D> ModelSize<D> for Diagonal<A, S, D>
where A: Scalar,
S: Data<Elem = A>,
D: Dimension
{
fn model_size(&self) -> D::Pattern {
self.diag.dim()
}
}
impl<A, S, D> Diagonal<A, S, D>
where A: Scalar,
S: DataClone<Elem = A> + DataMut,
D: Dimension
{
pub fn new(diag_of_matrix: ArrayBase<S, D>, dt: A::Real) -> Self {
let mut diag = diag_of_matrix.clone();
for v in diag.iter_mut() {
*v = v.mul_real(dt).exp();
}
Diagonal {
diag: diag,
diag_of_matrix: diag_of_matrix,
dt: dt,
}
}
}
impl<A, S, D> TimeEvolutionBase<S, D> for Diagonal<A, S, D>
where A: Scalar,
S: DataMut<Elem = A>,
D: Dimension
{
type Scalar = A;
type Time = A::Real;
fn iterate<'a>(&self, mut x: &'a mut ArrayBase<S, D>) -> &'a mut ArrayBase<S, D> {
for (val, d) in x.iter_mut().zip(self.diag.iter()) {
*val = *val * *d;
}
x
}
}