ndarray_numtest/
assert.rs

1//! Assertions for value and array
2
3use ndarray::{Array, Dimension, IntoDimension};
4use float_cmp::ApproxEqRatio;
5use num_complex::Complex;
6
7/// test two values are close in relative tolerance sense
8pub trait AssertClose: Sized + Copy {
9    type Tol;
10    fn assert_close(self, truth: Self, rtol: Self::Tol);
11}
12
13macro_rules! impl_AssertClose {
14    ($scalar:ty) => {
15impl AssertClose for $scalar {
16    type Tol = $scalar;
17    fn assert_close(self, truth: Self, rtol: Self::Tol) {
18        if !self.approx_eq_ratio(&truth, rtol) {
19            panic!("Not close: val={}, truth={}, rtol={}", self, truth, rtol);
20        }
21    }
22}
23impl AssertClose for Complex<$scalar> {
24    type Tol = $scalar;
25    fn assert_close(self, truth: Self, rtol: Self::Tol) {
26        if !(self.re.approx_eq_ratio(&truth.re, rtol) && self.im.approx_eq_ratio(&truth.im, rtol)) {
27            panic!("Not close: val={}, truth={}, rtol={}", self, truth, rtol);
28        }
29    }
30}
31}} // impl_AssertClose
32impl_AssertClose!(f64);
33impl_AssertClose!(f32);
34
35/// test two arrays are close
36pub trait AssertAllClose {
37    type Tol;
38    /// test two arrays are close in L2-norm with relative tolerance
39    fn assert_allclose_l2(&self, truth: &Self, rtol: Self::Tol);
40    /// test two arrays are close in inf-norm with absolute tolerance
41    fn assert_allclose_inf(&self, truth: &Self, atol: Self::Tol);
42}
43
44macro_rules! impl_AssertAllClose {
45    ($scalar:ty, $float:ty, $abs:ident) => {
46impl AssertAllClose for [$scalar]{
47    type Tol = $float;
48    fn assert_allclose_inf(&self, truth: &Self, atol: Self::Tol) {
49        for (x, y) in self.iter().zip(truth.iter()) {
50            let tol = (x - y).$abs();
51            if tol > atol {
52                panic!("Not close in inf-norm (atol={}): \ntest = \n{:?}\nTruth = \n{:?}",
53                       atol, self, truth);
54            }
55        }
56    }
57    fn assert_allclose_l2(&self, truth: &Self, rtol: Self::Tol) {
58        let nrm: Self::Tol = truth.iter().map(|x| x.$abs().powi(2)).sum();
59        let dev: Self::Tol = self.iter().zip(truth.iter()).map(|(x, y)| (x-y).$abs().powi(2)).sum();
60        if dev / nrm > rtol.powi(2) {
61            panic!("Not close in L2-norm (rtol={}): \ntest = \n{:?}\nTruth = \n{:?}",
62                   rtol, self, truth);
63        }
64    }
65}
66
67impl AssertAllClose for Vec<$scalar> {
68    type Tol = $float;
69    fn assert_allclose_inf(&self, truth: &Self, atol: Self::Tol) {
70        self.as_slice().assert_allclose_inf(&truth, atol);
71    }
72    fn assert_allclose_l2(&self, truth: &Self, rtol: Self::Tol) {
73        self.as_slice().assert_allclose_l2(&truth, rtol);
74    }
75}
76
77impl<D: Dimension> AssertAllClose for Array<$scalar, D> {
78    type Tol = $float;
79    fn assert_allclose_inf(&self, truth: &Self, atol: Self::Tol) {
80        if self.shape() != truth.shape() {
81            panic!("Shape missmatch: self={:?}, truth={:?}", self.shape(), truth.shape());
82        }
83        for (idx, val) in self.indexed_iter() {
84            let t = truth[idx.into_dimension()];
85            let tol = (*val - t).$abs();
86            if tol > atol {
87                panic!("Not close in inf-norm (atol={}): \ntest = \n{:?}\nTruth = \n{:?}",
88                       atol, self, truth);
89            }
90        }
91    }
92    fn assert_allclose_l2(&self, truth: &Self, rtol: Self::Tol) {
93        if self.shape() != truth.shape() {
94            panic!("Shape missmatch: self={:?}, truth={:?}", self.shape(), truth.shape());
95        }
96        let nrm: Self::Tol = truth.iter().map(|x| x.$abs().powi(2)).sum();
97        let dev: Self::Tol = self.indexed_iter().map(|(idx, val)| (truth[idx.into_dimension()] - val).$abs().powi(2)).sum();
98        if dev / nrm > rtol.powi(2) {
99            panic!("Not close in L2-norm (rtol={}): \ntest = \n{:?}\nTruth = \n{:?}",
100                   rtol, self, truth);
101        }
102    }
103}
104}} // impl_AssertAllClose
105
106impl_AssertAllClose!(f64, f64, abs);
107impl_AssertAllClose!(f32, f32, abs);
108impl_AssertAllClose!(Complex<f64>, f64, norm);
109impl_AssertAllClose!(Complex<f32>, f32, norm);