1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
use ndarray::{s, ArrayBase, Data, Ix3, Zip};
use crate::{array_like, dim_minus, Mask};
pub fn median_filter<S>(mask: &ArrayBase<S, Ix3>) -> Mask
where
S: Data<Elem = bool>,
{
let range = |i, max| {
if i == 0 {
0..2
} else if i == max {
max - 1..max + 1
} else {
i - 1..i + 2
}
};
let (width, height, depth) = dim_minus(mask, 1);
let ranges_x: Vec<_> = (0..=width).map(|x| range(x, width)).collect();
let ranges_y: Vec<_> = (0..=height).map(|y| range(y, height)).collect();
let ranges_z: Vec<_> = (0..=depth).map(|z| range(z, depth)).collect();
let mut new_mask = array_like(mask, mask.dim(), false);
Zip::indexed(&mut new_mask).for_each(|idx, new_mask| {
let r_x = &ranges_x[idx.0];
let r_y = &ranges_y[idx.1];
let r_z = &ranges_z[idx.2];
let nb_required = ((r_x.len() * r_y.len() * r_z.len()) as u8 - 1) / 2;
*new_mask = mask
.slice(s![r_x.clone(), r_y.clone(), r_z.clone()])
.iter()
.fold(0, |acc, &m| acc + m as u8)
> nb_required;
});
new_mask
}