Module cholesky

Source
Expand description

Cholesky decomposition of Hermitian (or real symmetric) positive definite matrices

See the Wikipedia page about Cholesky decomposition for more information.

§Example

Using the Cholesky decomposition of A for various operations, where A is a Hermitian (or real symmetric) positive definite matrix:

#[macro_use]
extern crate ndarray;
extern crate ndarray_linalg;

use ndarray::prelude::*;
use ndarray_linalg::cholesky::*;

let a: Array2<f64> = array![
    [  4.,  12., -16.],
    [ 12.,  37., -43.],
    [-16., -43.,  98.]
];

// Obtain `L`
let lower = a.cholesky(UPLO::Lower).unwrap();
assert!(lower.abs_diff_eq(&array![
    [ 2., 0., 0.],
    [ 6., 1., 0.],
    [-8., 5., 3.]
], 1e-9));

// Find the determinant of `A`
let det = a.detc().unwrap();
assert!((det - 36.).abs() < 1e-9);

// Solve `A * x = b`
let b = array![4., 13., -11.];
let x = a.solvec(&b).unwrap();
assert!(x.abs_diff_eq(&array![-2., 1., 0.], 1e-9));

Structs§

CholeskyFactorized
Cholesky decomposition of Hermitian (or real symmetric) positive definite matrix

Enums§

UPLO
Upper/Lower specification for seveal usages

Traits§

Cholesky
Cholesky decomposition of Hermitian (or real symmetric) positive definite matrix reference
CholeskyInplace
Cholesky decomposition of Hermitian (or real symmetric) positive definite mutable reference of matrix
CholeskyInto
Cholesky decomposition of Hermitian (or real symmetric) positive definite matrix
DeterminantC
Determinant of Hermitian (or real symmetric) positive definite matrix ref
DeterminantCInto
Determinant of Hermitian (or real symmetric) positive definite matrix
FactorizeC
Cholesky decomposition of Hermitian (or real symmetric) positive definite matrix reference
FactorizeCInto
Cholesky decomposition of Hermitian (or real symmetric) positive definite matrix
InverseC
Inverse of Hermitian (or real symmetric) positive definite matrix ref
InverseCInto
Inverse of Hermitian (or real symmetric) positive definite matrix
SolveC
Solve systems of linear equations with Hermitian (or real symmetric) positive definite coefficient matrices