1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
//! Basic types and their methods for linear algebra

use ndarray::LinalgScalar;
use num_complex::Complex;
use num_traits::*;
use rand::Rng;
use rand::distributions::*;
use std::fmt::Debug;
use std::iter::Sum;

use super::lapack_traits::LapackScalar;

pub use num_complex::Complex32 as c32;
pub use num_complex::Complex64 as c64;

/// General Scalar trait. This generalizes complex and real number.
///
/// You can use the following operations with `A: Scalar`:
///
/// - [abs](trait.Absolute.html#method.abs)
/// - [squared](trait.Absolute.html#tymethod.squared)
/// - [sqrt](trait.SquareRoot.html#tymethod.sqrt)
/// - [exp](trait.Exponential.html#tymethod.exp)
/// - [conj](trait.Conjugate.html#tymethod.conj)
/// - [randn](trait.RandNormal.html#tymethod.randn)
///
pub trait Scalar
    : LapackScalar
    + LinalgScalar
    + AssociatedReal
    + AssociatedComplex
    + Absolute
    + SquareRoot
    + Exponential
    + Conjugate
    + RandNormal
    + Debug {
}

impl Scalar for f32 {}
impl Scalar for f64 {}
impl Scalar for c32 {}
impl Scalar for c64 {}

pub trait RealScalar: Scalar + Float + Sum {}

impl RealScalar for f32 {}
impl RealScalar for f64 {}

/// Define associating real float type
pub trait AssociatedReal: Sized {
    type Real: RealScalar;
    fn inject(Self::Real) -> Self;
    fn add_real(self, Self::Real) -> Self;
    fn sub_real(self, Self::Real) -> Self;
    fn mul_real(self, Self::Real) -> Self;
    fn div_real(self, Self::Real) -> Self;
}

/// Define associating complex type
pub trait AssociatedComplex: Sized {
    type Complex;
    fn inject(Self) -> Self::Complex;
    fn add_complex(self, Self::Complex) -> Self::Complex;
    fn sub_complex(self, Self::Complex) -> Self::Complex;
    fn mul_complex(self, Self::Complex) -> Self::Complex;
}

/// Define `abs()` more generally
pub trait Absolute: AssociatedReal {
    fn squared(&self) -> Self::Real;
    fn abs(&self) -> Self::Real {
        self.squared().sqrt()
    }
}

/// Define `sqrt()` more generally
pub trait SquareRoot {
    fn sqrt(&self) -> Self;
}

/// Define `exp()` more generally
pub trait Exponential {
    fn exp(&self) -> Self;
}

/// Complex conjugate value
pub trait Conjugate: Copy {
    fn conj(self) -> Self;
}

/// Scalars which can be initialized from Gaussian random number
pub trait RandNormal {
    fn randn<R: Rng>(&mut R) -> Self;
}

macro_rules! impl_traits {
    ($real:ty, $complex:ty) => {

impl AssociatedReal for $real {
    type Real = $real;
    fn inject(r: Self::Real) -> Self { r }
    fn add_real(self, r: Self::Real) -> Self { self + r }
    fn sub_real(self, r: Self::Real) -> Self { self - r }
    fn mul_real(self, r: Self::Real) -> Self { self * r }
    fn div_real(self, r: Self::Real) -> Self { self / r }
}

impl AssociatedReal for $complex {
    type Real = $real;
    fn inject(r: Self::Real) -> Self { Self::new(r, 0.0) }
    fn add_real(self, r: Self::Real) -> Self { self + r }
    fn sub_real(self, r: Self::Real) -> Self { self - r }
    fn mul_real(self, r: Self::Real) -> Self { self * r }
    fn div_real(self, r: Self::Real) -> Self { self / r }
}

impl AssociatedComplex for $real {
    type Complex = $complex;
    fn inject(r: Self) -> Self::Complex { Self::Complex::new(r, 0.0) }
    fn add_complex(self, c: Self::Complex) -> Self::Complex { self + c }
    fn sub_complex(self, c: Self::Complex) -> Self::Complex { self - c }
    fn mul_complex(self, c: Self::Complex) -> Self::Complex { self * c }
}

impl AssociatedComplex for $complex {
    type Complex = $complex;
    fn inject(c: Self) -> Self::Complex { c }
    fn add_complex(self, c: Self::Complex) -> Self::Complex { self + c }
    fn sub_complex(self, c: Self::Complex) -> Self::Complex { self - c }
    fn mul_complex(self, c: Self::Complex) -> Self::Complex { self * c }
}

impl Absolute for $real {
    fn squared(&self) -> Self::Real {
        *self * *self
    }
    fn abs(&self) -> Self::Real{
        Float::abs(*self)
    }
}

impl Absolute for $complex {
    fn squared(&self) -> Self::Real {
        self.norm_sqr()
    }
    fn abs(&self) -> Self::Real {
        self.norm()
    }
}

impl SquareRoot for $real {
    fn sqrt(&self) -> Self {
        Float::sqrt(*self)
    }
}

impl SquareRoot for $complex {
    fn sqrt(&self) -> Self {
        Complex::sqrt(self)
    }
}

impl Exponential for $real {
    fn exp(&self) -> Self {
        Float::exp(*self)
    }
}

impl Exponential for $complex {
    fn exp(&self) -> Self {
        Complex::exp(self)
    }
}

impl Conjugate for $real {
    fn conj(self) -> Self {
        self
    }
}

impl Conjugate for $complex {
    fn conj(self) -> Self {
        Complex::conj(&self)
    }
}

impl RandNormal for $real {
    fn randn<R: Rng>(rng: &mut R) -> Self {
        let dist = Normal::new(0., 1.);
        dist.ind_sample(rng) as $real
    }
}

impl RandNormal for $complex {
    fn randn<R: Rng>(rng: &mut R) -> Self {
        let dist = Normal::new(0., 1.);
        let re = dist.ind_sample(rng) as $real;
        let im = dist.ind_sample(rng) as $real;
        Self::new(re, im)
    }
}

}} // impl_traits!

impl_traits!(f64, c64);
impl_traits!(f32, c32);