1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
use ndarray::*;
use super::matrix::{Matrix, MFloat};
use super::square::SquareMatrix;
use super::error::LinalgError;
use super::util::hstack;
use super::impls::solve::ImplSolve;
pub trait SolveTriangular<Rhs>: Matrix + SquareMatrix {
type Output;
fn solve_upper(&self, Rhs) -> Result<Self::Output, LinalgError>;
fn solve_lower(&self, Rhs) -> Result<Self::Output, LinalgError>;
}
impl<A, S1, S2> SolveTriangular<ArrayBase<S2, Ix1>> for ArrayBase<S1, Ix2>
where A: MFloat,
S1: Data<Elem = A>,
S2: DataMut<Elem = A>,
ArrayBase<S1, Ix2>: Matrix + SquareMatrix
{
type Output = ArrayBase<S2, Ix1>;
fn solve_upper(&self, mut b: ArrayBase<S2, Ix1>) -> Result<Self::Output, LinalgError> {
let n = self.square_size()?;
let layout = self.layout()?;
let a = self.as_slice_memory_order().unwrap();
ImplSolve::solve_triangle(layout,
'U' as u8,
n,
a,
b.as_slice_memory_order_mut().unwrap(),
1)?;
Ok(b)
}
fn solve_lower(&self, mut b: ArrayBase<S2, Ix1>) -> Result<Self::Output, LinalgError> {
let n = self.square_size()?;
let layout = self.layout()?;
let a = self.as_slice_memory_order().unwrap();
ImplSolve::solve_triangle(layout,
'L' as u8,
n,
a,
b.as_slice_memory_order_mut().unwrap(),
1)?;
Ok(b)
}
}
impl<'a, S1, S2, A> SolveTriangular<&'a ArrayBase<S2, Ix2>> for ArrayBase<S1, Ix2>
where A: MFloat,
S1: Data<Elem = A>,
S2: Data<Elem = A>,
ArrayBase<S1, Ix2>: Matrix + SquareMatrix
{
type Output = Array<A, Ix2>;
fn solve_upper(&self, bs: &ArrayBase<S2, Ix2>) -> Result<Self::Output, LinalgError> {
let mut xs = Vec::new();
for b in bs.axis_iter(Axis(1)) {
let x = self.solve_upper(b.to_owned())?;
xs.push(x);
}
hstack(&xs).map_err(|e| e.into())
}
fn solve_lower(&self, bs: &ArrayBase<S2, Ix2>) -> Result<Self::Output, LinalgError> {
let mut xs = Vec::new();
for b in bs.axis_iter(Axis(1)) {
let x = self.solve_lower(b.to_owned())?;
xs.push(x);
}
hstack(&xs).map_err(|e| e.into())
}
}
impl<A: MFloat> SolveTriangular<RcArray<A, Ix2>> for RcArray<A, Ix2> {
type Output = RcArray<A, Ix2>;
fn solve_upper(&self, b: RcArray<A, Ix2>) -> Result<Self::Output, LinalgError> {
let x = self.to_owned().solve_upper(&b)?;
Ok(x.into_shared())
}
fn solve_lower(&self, b: RcArray<A, Ix2>) -> Result<Self::Output, LinalgError> {
let x = self.to_owned().solve_lower(&b)?;
Ok(x.into_shared())
}
}
pub fn drop_upper<A: NdFloat, S>(mut a: ArrayBase<S, Ix2>) -> ArrayBase<S, Ix2>
where S: DataMut<Elem = A>
{
for ((i, j), val) in a.indexed_iter_mut() {
if i < j {
*val = A::zero();
}
}
a
}
pub fn drop_lower<A: NdFloat, S>(mut a: ArrayBase<S, Ix2>) -> ArrayBase<S, Ix2>
where S: DataMut<Elem = A>
{
for ((i, j), val) in a.indexed_iter_mut() {
if i > j {
*val = A::zero();
}
}
a
}