1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
//! Eigenvalue decomposition for general matrices

use lapacke;
use num_traits::Zero;

use crate::error::*;
use crate::layout::MatrixLayout;
use crate::types::*;

use super::into_result;

/// Wraps `*geev` for real/complex
pub trait Eig_: Scalar {
    unsafe fn eig(
        calc_v: bool,
        l: MatrixLayout,
        a: &mut [Self],
    ) -> Result<(Vec<Self::Complex>, Vec<Self::Complex>)>;
}

macro_rules! impl_eig_complex {
    ($scalar:ty, $ev:path) => {
        impl Eig_ for $scalar {
            unsafe fn eig(
                calc_v: bool,
                l: MatrixLayout,
                mut a: &mut [Self],
            ) -> Result<(Vec<Self::Complex>, Vec<Self::Complex>)> {
                let (n, _) = l.size();
                let jobvr = if calc_v { b'V' } else { b'N' };
                let mut w = vec![Self::Complex::zero(); n as usize];
                let mut vl = Vec::new();
                let mut vr = vec![Self::Complex::zero(); (n * n) as usize];
                let info = $ev(
                    l.lapacke_layout(),
                    b'N',
                    jobvr,
                    n,
                    &mut a,
                    n,
                    &mut w,
                    &mut vl,
                    n,
                    &mut vr,
                    n,
                );
                into_result(info, (w, vr))
            }
        }
    };
}

macro_rules! impl_eig_real {
    ($scalar:ty, $ev:path) => {
        impl Eig_ for $scalar {
            unsafe fn eig(
                calc_v: bool,
                l: MatrixLayout,
                mut a: &mut [Self],
            ) -> Result<(Vec<Self::Complex>, Vec<Self::Complex>)> {
                let (n, _) = l.size();
                let jobvr = if calc_v { b'V' } else { b'N' };
                let mut wr = vec![Self::Real::zero(); n as usize];
                let mut wi = vec![Self::Real::zero(); n as usize];
                let mut vl = Vec::new();
                let mut vr = vec![Self::Real::zero(); (n * n) as usize];
                let info = $ev(
                    l.lapacke_layout(),
                    b'N',
                    jobvr,
                    n,
                    &mut a,
                    n,
                    &mut wr,
                    &mut wi,
                    &mut vl,
                    n,
                    &mut vr,
                    n,
                );
                let w: Vec<Self::Complex> = wr
                    .iter()
                    .zip(wi.iter())
                    .map(|(&r, &i)| Self::Complex::new(r, i))
                    .collect();
                // If the j-th eigenvalue is real, then
                // eigenvector = [ vr[j], vr[j+n], vr[j+2*n], ... ].
                //
                // If the j-th and (j+1)-st eigenvalues form a complex conjugate pair,
                // eigenvector(j)   = [ vr[j] + i*vr[j+1], vr[j+n] + i*vr[j+n+1], vr[j+2*n] + i*vr[j+2*n+1], ... ] and
                // eigenvector(j+1) = [ vr[j] - i*vr[j+1], vr[j+n] - i*vr[j+n+1], vr[j+2*n] - i*vr[j+2*n+1], ... ].
                //
                // Therefore, if eigenvector(j) is written as [ v_{j0}, v_{j1}, v_{j2}, ... ],
                // you have to make
                // v = vec![ v_{00}, v_{10}, v_{20}, ..., v_{jk}, v_{(j+1)k}, v_{(j+2)k}, ... ] (v.len() = n*n)
                // based on wi and vr.
                // After that, v is converted to Array2 (see ../eig.rs).
                let n = n as usize;
                let mut flg = false;
                let conj: Vec<i8> = wi
                    .iter()
                    .map(|&i| {
                        if flg {
                            flg = false;
                            -1
                        } else if i != 0.0 {
                            flg = true;
                            1
                        } else {
                            0
                        }
                    })
                    .collect();
                let v: Vec<Self::Complex> = (0..n * n)
                    .map(|i| {
                        let j = i % n;
                        match conj[j] {
                            1 => Self::Complex::new(vr[i], vr[i + 1]),
                            -1 => Self::Complex::new(vr[i - 1], -vr[i]),
                            _ => Self::Complex::new(vr[i], 0.0),
                        }
                    })
                    .collect();

                into_result(info, (w, v))
            }
        }
    };
}

impl_eig_real!(f64, lapacke::dgeev);
impl_eig_real!(f32, lapacke::sgeev);
impl_eig_complex!(c64, lapacke::zgeev);
impl_eig_complex!(c32, lapacke::cgeev);