1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
//! Generator functions for matrices

use ndarray::*;
use rand::prelude::*;

use super::convert::*;
use super::error::*;
use super::qr::*;
use super::types::*;

/// Hermite conjugate matrix
pub fn conjugate<A, Si, So>(a: &ArrayBase<Si, Ix2>) -> ArrayBase<So, Ix2>
where
    A: Scalar,
    Si: Data<Elem = A>,
    So: DataOwned<Elem = A> + DataMut,
{
    let mut a: ArrayBase<So, Ix2> = replicate(&a.t());
    for val in a.iter_mut() {
        *val = val.conj();
    }
    a
}

/// Generate random array
pub fn random<A, S, Sh, D>(sh: Sh) -> ArrayBase<S, D>
where
    A: Scalar,
    S: DataOwned<Elem = A>,
    D: Dimension,
    Sh: ShapeBuilder<Dim = D>,
{
    let mut rng = thread_rng();
    ArrayBase::from_shape_fn(sh, |_| A::rand(&mut rng))
}

/// Generate random unitary matrix using QR decomposition
///
/// Be sure that this it **NOT** a uniform distribution. Use it only for test purpose.
pub fn random_unitary<A>(n: usize) -> Array2<A>
where
    A: Scalar + Lapack,
{
    let a: Array2<A> = random((n, n));
    let (q, _r) = a.qr_into().unwrap();
    q
}

/// Generate random regular matrix
///
/// Be sure that this it **NOT** a uniform distribution. Use it only for test purpose.
pub fn random_regular<A>(n: usize) -> Array2<A>
where
    A: Scalar + Lapack,
{
    let a: Array2<A> = random((n, n));
    let (q, mut r) = a.qr_into().unwrap();
    for i in 0..n {
        r[(i, i)] = A::one() + A::from_real(r[(i, i)].abs());
    }
    q.dot(&r)
}

/// Random Hermite matrix
pub fn random_hermite<A, S>(n: usize) -> ArrayBase<S, Ix2>
where
    A: Scalar,
    S: DataOwned<Elem = A> + DataMut,
{
    let mut a: ArrayBase<S, Ix2> = random((n, n));
    for i in 0..n {
        a[(i, i)] = a[(i, i)] + a[(i, i)].conj();
        for j in (i + 1)..n {
            a[(i, j)] = a[(j, i)].conj();
        }
    }
    a
}

/// Random Hermite Positive-definite matrix
///
/// - Eigenvalue of matrix must be larger than 1 (thus non-singular)
///
pub fn random_hpd<A, S>(n: usize) -> ArrayBase<S, Ix2>
where
    A: Scalar,
    S: DataOwned<Elem = A> + DataMut,
{
    let a: Array2<A> = random((n, n));
    let ah: Array2<A> = conjugate(&a);
    ArrayBase::eye(n) + &ah.dot(&a)
}

/// construct matrix from diag
pub fn from_diag<A>(d: &[A]) -> Array2<A>
where
    A: Scalar,
{
    let n = d.len();
    let mut e = Array::zeros((n, n));
    for i in 0..n {
        e[(i, i)] = d[i];
    }
    e
}

/// stack vectors into matrix horizontally
pub fn hstack<A, S>(xs: &[ArrayBase<S, Ix1>]) -> Result<Array<A, Ix2>>
where
    A: Scalar,
    S: Data<Elem = A>,
{
    let views: Vec<_> = xs
        .iter()
        .map(|x| {
            let n = x.len();
            x.view().into_shape((n, 1)).unwrap()
        })
        .collect();
    stack(Axis(1), &views).map_err(|e| e.into())
}

/// stack vectors into matrix vertically
pub fn vstack<A, S>(xs: &[ArrayBase<S, Ix1>]) -> Result<Array<A, Ix2>>
where
    A: Scalar,
    S: Data<Elem = A>,
{
    let views: Vec<_> = xs
        .iter()
        .map(|x| {
            let n = x.len();
            x.view().into_shape((1, n)).unwrap()
        })
        .collect();
    stack(Axis(0), &views).map_err(|e| e.into())
}