1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
use super::*;
use crate::{generate::*, inner::*, norm::Norm};
#[derive(Debug, Clone)]
pub struct MGS<A> {
dimension: usize,
q: Vec<Array1<A>>,
}
impl<A: Scalar> MGS<A> {
pub fn new(dimension: usize) -> Self {
Self {
dimension,
q: Vec::new(),
}
}
}
impl<A: Scalar + Lapack> Orthogonalizer for MGS<A> {
type Elem = A;
fn dim(&self) -> usize {
self.dimension
}
fn len(&self) -> usize {
self.q.len()
}
fn orthogonalize<S>(&self, a: &mut ArrayBase<S, Ix1>) -> Array1<A>
where
A: Lapack,
S: DataMut<Elem = A>,
{
assert_eq!(a.len(), self.dim());
let mut coef = Array1::zeros(self.len() + 1);
for i in 0..self.len() {
let q = &self.q[i];
let c = q.inner(&a);
azip!(mut a (&mut *a), q (q) in { *a = *a - c * q } );
coef[i] = c;
}
let nrm = a.norm_l2();
coef[self.len()] = A::from_real(nrm);
coef
}
fn append<S>(&mut self, a: ArrayBase<S, Ix1>, rtol: A::Real) -> Result<Array1<A>, Array1<A>>
where
A: Lapack,
S: Data<Elem = A>,
{
let mut a = a.into_owned();
let coef = self.orthogonalize(&mut a);
let nrm = coef[coef.len() - 1].re();
if nrm < rtol {
return Err(coef);
}
azip!(mut a in { *a = *a / A::from_real(nrm) });
self.q.push(a);
Ok(coef)
}
fn get_q(&self) -> Q<A> {
hstack(&self.q).unwrap()
}
}
pub fn mgs<A, S>(
iter: impl Iterator<Item = ArrayBase<S, Ix1>>,
dim: usize,
rtol: A::Real,
strategy: Strategy,
) -> (Q<A>, R<A>)
where
A: Scalar + Lapack,
S: Data<Elem = A>,
{
let mgs = MGS::new(dim);
qr(iter, mgs, rtol, strategy)
}