[−][src]Module ndarray_linalg::solve 
Solve systems of linear equations and invert matrices
Examples
Solve A * x = b:
#[macro_use] extern crate ndarray; extern crate ndarray_linalg; use ndarray::prelude::*; use ndarray_linalg::Solve; let a: Array2<f64> = array![[3., 2., -1.], [2., -2., 4.], [-2., 1., -2.]]; let b: Array1<f64> = array![1., -2., 0.]; let x = a.solve_into(b).unwrap(); assert!(x.all_close(&array![1., -2., -2.], 1e-9));
There are also special functions for solving A^T * x = b and
A^H * x = b.
If you are solving multiple systems of linear equations with the same
coefficient matrix A, it's faster to compute the LU factorization once at
the beginning than solving directly using A:
use ndarray::prelude::*; use ndarray_linalg::*; let a: Array2<f64> = random((3, 3)); let f = a.factorize_into().unwrap(); // LU factorize A (A is consumed) for _ in 0..10 { let b: Array1<f64> = random(3); let x = f.solve_into(b).unwrap(); // Solve A * x = b using factorized L, U }
Re-exports
| pub use crate::lapack::Pivot; | 
| pub use crate::lapack::Transpose; | 
Structs
| LUFactorized | Represents the LU factorization of a matrix  | 
Traits
| Determinant | An interface for calculating determinants of matrix refs. | 
| DeterminantInto | An interface for calculating determinants of matrices. | 
| Factorize | An interface for computing LU factorizations of matrix refs. | 
| FactorizeInto | An interface for computing LU factorizations of matrices. | 
| Inverse | An interface for inverting matrix refs. | 
| InverseInto | An interface for inverting matrices. | 
| ReciprocalConditionNum | An interface for estimating the reciprocal condition number of matrix refs. | 
| ReciprocalConditionNumInto | An interface for estimating the reciprocal condition number of matrices. | 
| Solve | An interface for solving systems of linear equations. |