1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
use std::iter::Sum;
use ndarray::{ArrayBase, Data, Dimension, LinalgScalar};
use num_traits::Float;
use super::vector::*;
pub fn all_close_max<A, Tol, S1, S2, D>(test: &ArrayBase<S1, D>,
truth: &ArrayBase<S2, D>,
atol: Tol)
-> Result<Tol, Tol>
where A: LinalgScalar + Squared<Output = Tol>,
Tol: Float + Sum,
S1: Data<Elem = A>,
S2: Data<Elem = A>,
D: Dimension
{
let tol = (test - truth).norm_max();
if tol < atol { Ok(tol) } else { Err(tol) }
}
pub fn all_close_l1<A, Tol, S1, S2, D>(test: &ArrayBase<S1, D>, truth: &ArrayBase<S2, D>, rtol: Tol) -> Result<Tol, Tol>
where A: LinalgScalar + Squared<Output = Tol>,
Tol: Float + Sum,
S1: Data<Elem = A>,
S2: Data<Elem = A>,
D: Dimension
{
let tol = (test - truth).norm_l1() / truth.norm_l1();
if tol < rtol { Ok(tol) } else { Err(tol) }
}
pub fn all_close_l2<A, Tol, S1, S2, D>(test: &ArrayBase<S1, D>, truth: &ArrayBase<S2, D>, rtol: Tol) -> Result<Tol, Tol>
where A: LinalgScalar + Squared<Output = Tol>,
Tol: Float + Sum,
S1: Data<Elem = A>,
S2: Data<Elem = A>,
D: Dimension
{
let tol = (test - truth).norm_l2() / truth.norm_l2();
if tol < rtol { Ok(tol) } else { Err(tol) }
}