1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424
//! A collection of structs and traits to interpolate data along the first two axis
//!
//! # Interpolator
//! - [`Interp2D`] The interpolator used with any strategy
//! - [`Interp2DBuilder`] Configure the interpolator
//!
//! # Traits
//! - [`Interp2DStrategy`] The trait used to specialize [`Interp2D`] with the correct strategy
//! - [`Interp2DStrategyBuilder`] The trait used to specialize [`Interp2DBuilder`] to initialize the correct strategy
//!
//! # Strategies
//! - [`Biliniar`] Linear interpolation strategy
use std::{fmt::Debug, ops::Sub};
use ndarray::{
Array, Array1, ArrayBase, ArrayView, Axis, AxisDescription, Data, DimAdd, Dimension,
IntoDimension, Ix1, Ix2, OwnedRepr, RemoveAxis, Slice,
};
use num_traits::{cast, Num, NumCast};
use crate::{
vector_extensions::{Monotonic, VectorExtensions},
BuilderError, InterpolateError,
};
mod aliases;
mod strategies;
pub use aliases::*;
pub use strategies::{Biliniar, Interp2DStrategy, Interp2DStrategyBuilder};
/// Two dimensional interpolator
#[derive(Debug)]
pub struct Interp2D<Sd, Sx, Sy, D, Strat>
where
Sd: Data,
Sd::Elem: Num + PartialOrd + NumCast + Copy + Debug + Sub,
Sx: Data<Elem = Sd::Elem>,
Sy: Data<Elem = Sd::Elem>,
D: Dimension,
{
x: ArrayBase<Sx, Ix1>,
y: ArrayBase<Sy, Ix1>,
data: ArrayBase<Sd, D>,
strategy: Strat,
}
impl<Sd, D> Interp2D<Sd, OwnedRepr<Sd::Elem>, OwnedRepr<Sd::Elem>, D, Biliniar>
where
Sd: Data,
Sd::Elem: Num + PartialOrd + NumCast + Copy + Debug + Sub,
D: Dimension,
{
/// Get the [Interp2DBuilder]
pub fn builder(
data: ArrayBase<Sd, D>,
) -> Interp2DBuilder<Sd, OwnedRepr<Sd::Elem>, OwnedRepr<Sd::Elem>, D, Biliniar> {
Interp2DBuilder::new(data)
}
}
impl<Sd, Sx, Sy, Strat> Interp2D<Sd, Sx, Sy, Ix2, Strat>
where
Sd: Data,
Sd::Elem: Num + PartialOrd + NumCast + Copy + Debug + Sub,
Sx: Data<Elem = Sd::Elem>,
Sy: Data<Elem = Sd::Elem>,
Strat: Interp2DStrategy<Sd, Sx, Sy, Ix2>,
{
/// convinient interpolation function for interpolation at one point
/// when the data dimension is [`type@Ix2`]
///
/// ```rust
/// # use ndarray_interp::*;
/// # use ndarray_interp::interp2d::*;
/// # use ndarray::*;
/// # use approx::*;
/// let data = array![
/// [1.0, 2.0],
/// [3.0, 4.0],
/// ];
/// let (qx, qy) = (0.0, 0.5);
/// let expected = 1.5;
///
/// let interpolator = Interp2D::builder(data).build().unwrap();
/// let result = interpolator.interp_scalar(qx, qy).unwrap();
/// # assert_eq!(result, expected);
/// ```
pub fn interp_scalar(&self, x: Sx::Elem, y: Sy::Elem) -> Result<Sd::Elem, InterpolateError> {
Ok(*self.interp(x, y)?.first().unwrap_or_else(|| unreachable!()))
}
}
impl<Sd, Sx, Sy, D, Strat> Interp2D<Sd, Sx, Sy, D, Strat>
where
Sd: Data,
Sd::Elem: Num + PartialOrd + NumCast + Copy + Debug + Sub,
Sx: Data<Elem = Sd::Elem>,
Sy: Data<Elem = Sd::Elem>,
D: Dimension + RemoveAxis,
D::Smaller: RemoveAxis,
Strat: Interp2DStrategy<Sd, Sx, Sy, D>,
{
/// Create a interpolator without any data validation. This is fast and cheap.
///
/// # Safety
/// The following data properties are assumed, but not checked:
/// - `x` and `y` are stricktly monotonic rising
/// - `data.shape()[0] == x.len()`, `data.shape()[1] == y.len()`
/// - the `strategy` is porperly initialized with the data
pub fn new_unchecked(
x: ArrayBase<Sx, Ix1>,
y: ArrayBase<Sy, Ix1>,
data: ArrayBase<Sd, D>,
strategy: Strat,
) -> Self {
Interp2D {
x,
y,
data,
strategy,
}
}
/// Calculate the interpolated values at `(x, y)`.
/// Returns the interpolated data in an array two dimensions smaller than
/// the data dimension.
///
/// Concider using [`interp_scalar(x, y)`](Interp2D::interp_scalar)
/// when the data dimension is [`type@Ix2`]
pub fn interp(
&self,
x: Sx::Elem,
y: Sy::Elem,
) -> Result<Array<Sd::Elem, <D::Smaller as Dimension>::Smaller>, InterpolateError> {
let dim = self
.data
.raw_dim()
.remove_axis(Axis(0))
.remove_axis(Axis(0));
let mut target = Array::zeros(dim);
self.strategy
.interp_into(self, target.view_mut(), x, y)
.map(|_| target)
}
/// Calculate the interpolated values at all points in `(xs, ys)`
///
/// # Dimensions
/// given the data dimension `N` and the query dimension `M` the return array
/// will have the dimension `M + N - 2` where the fist `M` dimensions correspond
/// to the query dimenions of `xs` and `ys`
///
/// Lets assume we hava a data dimension of `N = (2, 3, 4, 5)` and query this data
/// with an array of dimension `M = (10)`, the return dimension will be `(10, 4, 5)`
/// given a multi dimensional qurey of `M = (10, 20)` the return will be `(10, 20, 4, 5)`
///
/// # panics
/// when `xs.shape() != ys.shape()`
pub fn interp_array<Sqx, Sqy, Dq>(
&self,
xs: &ArrayBase<Sqx, Dq>,
ys: &ArrayBase<Sqy, Dq>,
) -> Result<
Array<Sd::Elem, <Dq as DimAdd<<D::Smaller as Dimension>::Smaller>>::Output>,
InterpolateError,
>
where
Sqx: Data<Elem = Sd::Elem>,
Sqy: Data<Elem = Sy::Elem>,
Dq: Dimension,
Dq: DimAdd<<D::Smaller as Dimension>::Smaller>,
{
let mut dim = <Dq as DimAdd<<D::Smaller as Dimension>::Smaller>>::Output::default();
assert!(
xs.shape() == ys.shape(),
"`xs.shape()` and `ys.shape()` do not match"
);
dim.as_array_view_mut()
.into_iter()
.zip(xs.shape().iter().chain(self.data.shape()[2..].iter()))
.for_each(|(new_axis, &len)| {
*new_axis = len;
});
let mut zs = Array::zeros(dim);
for (index, &x) in xs.indexed_iter() {
let current_dim = index.clone().into_dimension();
let y = *ys
.get(current_dim.clone())
.unwrap_or_else(|| unreachable!());
let subview =
zs.slice_each_axis_mut(|AxisDescription { axis: Axis(nr), .. }| match current_dim
.as_array_view()
.get(nr)
{
Some(idx) => Slice::from(*idx..*idx + 1),
None => Slice::from(..),
});
self.strategy.interp_into(
self,
subview
.into_shape(
self.data
.raw_dim()
.remove_axis(Axis(0))
.remove_axis(Axis(0)),
)
.unwrap_or_else(|_| unreachable!()),
x,
y,
)?;
}
Ok(zs)
}
/// get `(x, y, data)` coordinate at the given index
///
/// # panics
/// when index out of bounds
pub fn index_point(
&self,
x_idx: usize,
y_idx: usize,
) -> (
Sx::Elem,
Sx::Elem,
ArrayView<Sd::Elem, <D::Smaller as Dimension>::Smaller>,
) {
(
self.x[x_idx],
self.y[y_idx],
self.data
.slice_each_axis(|AxisDescription { axis, .. }| match axis {
Axis(0) => Slice {
start: x_idx as isize,
end: Some(x_idx as isize + 1),
step: 1,
},
Axis(1) => Slice {
start: y_idx as isize,
end: Some(y_idx as isize + 1),
step: 1,
},
_ => Slice::from(..),
})
.remove_axis(Axis(0))
.remove_axis(Axis(0)),
)
}
/// The index of a known value left of, or at x and y.
///
/// This will never return the right most index,
/// so calling [`index_point(x_idx+1, y_idx+1)`](Interp2D::index_point) is always safe.
pub fn get_index_left_of(&self, x: Sx::Elem, y: Sy::Elem) -> (usize, usize) {
(self.x.get_lower_index(x), self.y.get_lower_index(y))
}
pub fn is_in_x_range(&self, x: Sx::Elem) -> bool {
self.x[0] <= x && x <= self.x[self.x.len() - 1]
}
pub fn is_in_y_range(&self, y: Sy::Elem) -> bool {
self.y[0] <= y && y <= self.y[self.y.len() - 1]
}
}
/// Create and configure a [Interp2D] interpolator.
#[derive(Debug)]
pub struct Interp2DBuilder<Sd, Sx, Sy, D, Strat>
where
Sd: Data,
Sd::Elem: Num + PartialOrd + NumCast + Copy + Debug + Sub,
Sx: Data<Elem = Sd::Elem>,
Sy: Data<Elem = Sd::Elem>,
D: Dimension,
{
x: ArrayBase<Sx, Ix1>,
y: ArrayBase<Sy, Ix1>,
data: ArrayBase<Sd, D>,
strategy: Strat,
}
impl<Sd, D> Interp2DBuilder<Sd, OwnedRepr<Sd::Elem>, OwnedRepr<Sd::Elem>, D, Biliniar>
where
Sd: Data,
Sd::Elem: Num + PartialOrd + NumCast + Copy + Debug + Sub,
D: Dimension,
{
pub fn new(data: ArrayBase<Sd, D>) -> Self {
let x = Array1::from_iter((0..data.shape()[0]).map(|i| {
cast(i).unwrap_or_else(|| {
unimplemented!("casting from usize to a number should always work")
})
}));
let y = Array1::from_iter((0..data.shape()[1]).map(|i| {
cast(i).unwrap_or_else(|| {
unimplemented!("casting from usize to a number should always work")
})
}));
Interp2DBuilder {
x,
y,
data,
strategy: Biliniar::new(),
}
}
}
impl<Sd, Sx, Sy, D, Strat> Interp2DBuilder<Sd, Sx, Sy, D, Strat>
where
Sd: Data,
Sd::Elem: Num + PartialOrd + NumCast + Copy + Debug + Sub,
Sx: Data<Elem = Sd::Elem>,
Sy: Data<Elem = Sd::Elem>,
D: Dimension + RemoveAxis,
D::Smaller: RemoveAxis,
Strat: Interp2DStrategyBuilder<Sd, Sx, Sy, D>,
{
/// Set the interpolation strategy by provideing a [`Interp2DStrategyBuilder`].
/// By default [`Biliniar`] is used.
pub fn strategy<NewStrat: Interp2DStrategyBuilder<Sd, Sx, Sy, D>>(
self,
strategy: NewStrat,
) -> Interp2DBuilder<Sd, Sx, Sy, D, NewStrat> {
let Interp2DBuilder { x, y, data, .. } = self;
Interp2DBuilder {
x,
y,
data,
strategy,
}
}
/// Add an custom x axis for the data.
/// The axis must have the same lenght as the first axis of the data.
pub fn x<NewSx: Data<Elem = Sd::Elem>>(
self,
x: ArrayBase<NewSx, Ix1>,
) -> Interp2DBuilder<Sd, NewSx, Sy, D, Strat> {
let Interp2DBuilder {
y, data, strategy, ..
} = self;
Interp2DBuilder {
x,
y,
data,
strategy,
}
}
/// Add an custom y axis for the data.
/// The axis must have the same lenght as the second axis of the data.
pub fn y<NewSy: Data<Elem = Sd::Elem>>(
self,
y: ArrayBase<NewSy, Ix1>,
) -> Interp2DBuilder<Sd, Sx, NewSy, D, Strat> {
let Interp2DBuilder {
x, data, strategy, ..
} = self;
Interp2DBuilder {
x,
y,
data,
strategy,
}
}
/// Validate the input and create the configured [`Interp2D`]
pub fn build(self) -> Result<Interp2D<Sd, Sx, Sy, D, Strat::FinishedStrat>, BuilderError> {
use self::Monotonic::*;
use BuilderError::*;
let Interp2DBuilder {
x,
y,
data,
strategy: stratgy_builder,
} = self;
if data.ndim() < 2 {
return Err(DimensionError(
"data dimension needs to be at least 2".into(),
));
}
if data.shape()[0] < Strat::MINIMUM_DATA_LENGHT {
return Err(NotEnoughData(format!("The 0-dimension has not enough data for the chosen interpolation strategy. Provided: {}, Reqired: {}", data.shape()[0], Strat::MINIMUM_DATA_LENGHT)));
}
if data.shape()[1] < Strat::MINIMUM_DATA_LENGHT {
return Err(NotEnoughData(format!("The 1-dimension has not enough data for the chosen interpolation strategy. Provided: {}, Reqired: {}", data.shape()[1], Strat::MINIMUM_DATA_LENGHT)));
}
if x.len() != data.shape()[0] {
return Err(AxisLenght(format!(
"Lenghts of x-axis and data-0-axis need to match. Got x: {}, data-0: {}",
x.len(),
data.shape()[0]
)));
}
if y.len() != data.shape()[1] {
return Err(AxisLenght(format!(
"Lenghts of y-axis and data-1-axis need to match. Got y: {}, data-1: {}",
y.len(),
data.shape()[1]
)));
}
if !matches!(x.monotonic_prop(), Rising { strict: true }) {
return Err(Monotonic(
"The x-axis needs to be strictly monotonic rising".into(),
));
}
if !matches!(y.monotonic_prop(), Rising { strict: true }) {
return Err(Monotonic(
"The y-axis needs to be strictly monotonic rising".into(),
));
}
let strategy = stratgy_builder.build(&x, &y, &data)?;
Ok(Interp2D {
x,
y,
data,
strategy,
})
}
}