1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367
//! A collection of structs and traits to interpolate data along the first axis
//!
//! # Interpolator
//!  - [`Interp1D`] The interpolator used with any strategy
//!  - [`Interp1DBuilder`] Configure the interpolator
//!
//! # Traits
//!  - [`Interp1DStrategy`] The trait used to specialize [`Interp1D`] with the correct strategy
//!  - [`Interp1DStrategyBuilder`] The trait used to specialize [`Interp1DBuilder`] to initialize the correct strategy
//!
//! # Strategies
//!  - [`Linear`] Linear interpolation strategy
//!  - [`CubicSpline`] Cubic spline interpolation strategy
use std::{fmt::Debug, ops::Sub};
use ndarray::{
    Array, ArrayBase, ArrayView, Axis, AxisDescription, Data, DimAdd, Dimension, IntoDimension,
    Ix1, OwnedRepr, RemoveAxis, Slice,
};
use num_traits::{cast, Num, NumCast};
use crate::{
    vector_extensions::{Monotonic, VectorExtensions},
    BuilderError, InterpolateError,
};
mod aliases;
mod strategies;
pub use aliases::*;
pub use strategies::{CubicSpline, Interp1DStrategy, Interp1DStrategyBuilder, Linear};
/// One dimensional interpolator
#[derive(Debug)]
pub struct Interp1D<Sd, Sx, D, Strat>
where
    Sd: Data,
    Sd::Elem: Num + Debug,
    Sx: Data<Elem = Sd::Elem>,
    D: Dimension,
    Strat: Interp1DStrategy<Sd, Sx, D>,
{
    /// x values are guaranteed to be strict monotonically rising
    x: ArrayBase<Sx, Ix1>,
    data: ArrayBase<Sd, D>,
    strategy: Strat,
}
impl<Sd, Sx, Strat> Interp1D<Sd, Sx, Ix1, Strat>
where
    Sd: Data,
    Sd::Elem: Num + PartialOrd + NumCast + Copy + Debug + Sub,
    Sx: Data<Elem = Sd::Elem>,
    Strat: Interp1DStrategy<Sd, Sx, Ix1>,
{
    /// convinient interpolation function for interpolation at one point
    /// when the data dimension is [`type@Ix1`]
    ///
    /// ```rust
    /// # use ndarray_interp::*;
    /// # use ndarray_interp::interp1d::*;
    /// # use ndarray::*;
    /// # use approx::*;
    /// let data = array![1.0, 1.5, 2.0];
    /// let x =    array![1.0, 2.0, 3.0];
    /// let query = 1.5;
    /// let expected = 1.25;
    ///
    /// let interpolator = Interp1DBuilder::new(data).x(x).build().unwrap();
    /// let result = interpolator.interp_scalar(query).unwrap();
    /// # assert_eq!(result, expected);
    /// ```
    pub fn interp_scalar(&self, x: Sx::Elem) -> Result<Sd::Elem, InterpolateError> {
        Ok(*self.interp(x)?.first().unwrap_or_else(|| unreachable!()))
    }
}
impl<Sd, D> Interp1D<Sd, OwnedRepr<Sd::Elem>, D, Linear>
where
    Sd: Data,
    Sd::Elem: Num + PartialOrd + NumCast + Copy + Debug,
    D: Dimension + RemoveAxis,
{
    /// Get the [Interp1DBuilder]
    pub fn builder(data: ArrayBase<Sd, D>) -> Interp1DBuilder<Sd, OwnedRepr<Sd::Elem>, D, Linear> {
        Interp1DBuilder::new(data)
    }
}
impl<Sd, Sx, D, Strat> Interp1D<Sd, Sx, D, Strat>
where
    Sd: Data,
    Sd::Elem: Num + PartialOrd + NumCast + Copy + Debug + Sub,
    Sx: Data<Elem = Sd::Elem>,
    D: Dimension + RemoveAxis,
    Strat: Interp1DStrategy<Sd, Sx, D>,
{
    /// Create a interpolator without any data validation. This is fast and cheap.
    ///
    /// The following data properties are assumed, but not checked:
    /// `x` is stricktly monotonic rising and `data.shape()[0] == x.len()`
    pub fn new_unchecked(x: ArrayBase<Sx, Ix1>, data: ArrayBase<Sd, D>, strategy: Strat) -> Self {
        Interp1D { x, data, strategy }
    }
    /// Calculate the interpolated values at `x`.
    /// Returns the interpolated data in an array one dimension smaller than
    /// the data dimension.
    ///
    /// ```rust
    /// # use ndarray_interp::*;
    /// # use ndarray_interp::interp1d::*;
    /// # use ndarray::*;
    /// # use approx::*;
    /// // data has 2 dimension:
    /// let data = array![
    ///     [0.0, 2.0, 4.0],
    ///     [0.5, 2.5, 3.5],
    ///     [1.0, 3.0, 3.0],
    /// ];
    /// let query = 0.5;
    /// let expected = array![0.25, 2.25, 3.75];
    ///
    /// let interpolator = Interp1DBuilder::new(data).build().unwrap();
    /// let result = interpolator.interp(query).unwrap();
    /// # assert_abs_diff_eq!(result, expected, epsilon=f64::EPSILON);
    /// ```
    ///
    /// Concider using [`interp_scalar(x)`](Interp1D::interp_scalar)
    /// when the data dimension is [`type@Ix1`]
    pub fn interp(&self, x: Sx::Elem) -> Result<Array<Sd::Elem, D::Smaller>, InterpolateError> {
        let dim = self.data.raw_dim().remove_axis(Axis(0));
        let mut target: Array<Sd::Elem, _> = Array::zeros(dim);
        self.strategy
            .interp_into(self, target.view_mut(), x)
            .map(|_| target)
    }
    /// Calculate the interpolated values at all points in `xs`
    ///
    /// ```rust
    /// # use ndarray_interp::*;
    /// # use ndarray_interp::interp1d::*;
    /// # use ndarray::*;
    /// # use approx::*;
    /// let data =     array![0.0,  0.5, 1.0 ];
    /// let x =        array![0.0,  1.0, 2.0 ];
    /// let query =    array![0.5,  1.0, 1.5 ];
    /// let expected = array![0.25, 0.5, 0.75];
    ///
    /// let interpolator = Interp1DBuilder::new(data)
    ///     .x(x)
    ///     .strategy(Linear::new())
    ///     .build().unwrap();
    /// let result = interpolator.interp_array(&query).unwrap();
    /// # assert_abs_diff_eq!(result, expected, epsilon=f64::EPSILON);
    /// ```
    ///
    /// # Dimensions
    /// given the data dimension is `N` and the dimension of `xs` is `M`
    /// the return array will have dimension `M + N - 1` where the first
    /// `M` dimensions correspond to the dimensions of `xs`.
    ///
    /// ```rust
    /// # use ndarray_interp::*;
    /// # use ndarray_interp::interp1d::*;
    /// # use ndarray::*;
    /// # use approx::*;
    /// // data has 2 dimension:
    /// let data = array![
    ///     [0.0, 2.0],
    ///     [0.5, 2.5],
    ///     [1.0, 3.0],
    /// ];
    /// let x = array![
    ///     0.0,
    ///     1.0,
    ///     2.0,
    /// ];
    /// // query with 2 dimensions:
    /// let query = array![
    ///     [0.0, 0.5],
    ///     [1.0, 1.5],
    /// ];
    /// // expecting 3 dimensions!
    /// let expected = array![
    ///     [[0.0, 2.0], [0.25, 2.25]], // result for x=[0.0, 0.5]
    ///     [[0.5, 2.5], [0.75, 2.75]], // result for x=[1.0, 1.5]
    /// ];
    ///
    /// let interpolator = Interp1DBuilder::new(data)
    ///     .x(x)
    ///     .strategy(Linear::new())
    ///     .build().unwrap();
    /// let result = interpolator.interp_array(&query).unwrap();
    /// # assert_abs_diff_eq!(result, expected, epsilon=f64::EPSILON);
    /// ```
    pub fn interp_array<Sq, Dq>(
        &self,
        xs: &ArrayBase<Sq, Dq>,
    ) -> Result<Array<Sd::Elem, <Dq as DimAdd<D::Smaller>>::Output>, InterpolateError>
    where
        Sq: Data<Elem = Sd::Elem>,
        Dq: Dimension + DimAdd<D::Smaller>,
    {
        let mut dim = <Dq as DimAdd<D::Smaller>>::Output::default();
        dim.as_array_view_mut()
            .into_iter()
            .zip(xs.shape().iter().chain(self.data.shape()[1..].iter()))
            .for_each(|(new_axis, &len)| {
                *new_axis = len;
            });
        let mut ys = Array::zeros(dim);
        // Perform interpolation for each index
        for (index, &x) in xs.indexed_iter() {
            let current_dim = index.clone().into_dimension();
            let subview =
                ys.slice_each_axis_mut(|AxisDescription { axis: Axis(nr), .. }| match current_dim
                    .as_array_view()
                    .get(nr)
                {
                    Some(idx) => Slice::from(*idx..*idx + 1),
                    None => Slice::from(..),
                });
            self.strategy.interp_into(
                self,
                subview
                    .into_shape(self.data.raw_dim().remove_axis(Axis(0)))
                    .unwrap_or_else(|_| unreachable!()),
                x,
            )?;
        }
        Ok(ys)
    }
    /// get `(x, data)` coordinate at given index
    ///
    /// # panics
    /// when index out of bounds
    pub fn index_point(&self, index: usize) -> (Sx::Elem, ArrayView<Sd::Elem, D::Smaller>) {
        let view = self.data.index_axis(Axis(0), index);
        (self.x[index], view)
    }
    /// The index of a known value left of, or at x.
    ///
    /// This will never return the right most index,
    /// so calling [`index_point(idx+1)`](Interp1D::index_point) is always safe.
    pub fn get_index_left_of(&self, x: Sx::Elem) -> usize {
        self.x.get_lower_index(x)
    }
    pub fn is_in_range(&self, x: Sx::Elem) -> bool {
        self.x[0] <= x && x <= self.x[self.x.len() - 1]
    }
}
/// Create and configure a [Interp1D] Interpolator.
///
/// # Default configuration
/// In the default configuration the interpolation strategy is [`Linear{extrapolate: false}`].
/// The data will be interpolated along [`Axis(0)`] (currently this can not be changed).
/// The index to `Axis(0)` of the data will be used as x values.
#[derive(Debug)]
pub struct Interp1DBuilder<Sd, Sx, D, Strat>
where
    Sd: Data,
    Sd::Elem: Num + Debug,
    Sx: Data<Elem = Sd::Elem>,
    D: Dimension,
{
    x: ArrayBase<Sx, Ix1>,
    data: ArrayBase<Sd, D>,
    strategy: Strat,
}
impl<Sd, D> Interp1DBuilder<Sd, OwnedRepr<Sd::Elem>, D, Linear>
where
    Sd: Data,
    Sd::Elem: Num + PartialOrd + NumCast + Copy + Debug,
    D: Dimension,
{
    /// Create a new [Interp1DBuilder] and provide the data to interpolate.
    /// When nothing else is configured [Interp1DBuilder::build] will create an Interpolator using
    /// Linear Interpolation without extrapolation. As x axis the index to the data will be used.
    /// On multidimensional data interpolation happens along the first axis.
    pub fn new(data: ArrayBase<Sd, D>) -> Self {
        let len = data.shape()[0];
        Interp1DBuilder {
            x: Array::from_iter((0..len).map(|n| {
                cast(n).unwrap_or_else(|| {
                    unimplemented!("casting from usize to a number should always work")
                })
            })),
            data,
            strategy: Linear::new(),
        }
    }
}
impl<Sd, Sx, D, Strat> Interp1DBuilder<Sd, Sx, D, Strat>
where
    Sd: Data,
    Sd::Elem: Num + PartialOrd + NumCast + Copy + Debug,
    Sx: Data<Elem = Sd::Elem>,
    D: Dimension,
    Strat: Interp1DStrategyBuilder<Sd, Sx, D>,
{
    /// Add an custom x axis for the data. The axis needs to have the same lenght
    /// and store the same Type as the data. `x`  must be strict monotonic rising.
    /// If the x axis is not set the index `0..data.len() - 1` is used
    pub fn x<NewSx>(self, x: ArrayBase<NewSx, Ix1>) -> Interp1DBuilder<Sd, NewSx, D, Strat>
    where
        NewSx: Data<Elem = Sd::Elem>,
    {
        let Interp1DBuilder { data, strategy, .. } = self;
        Interp1DBuilder { x, data, strategy }
    }
    /// Set the interpolation strategy by providing a [Interp1DStrategyBuilder].
    /// By default [Linear] with `Linear{extrapolate: false}` is used.
    pub fn strategy<NewStrat>(self, strategy: NewStrat) -> Interp1DBuilder<Sd, Sx, D, NewStrat>
    where
        NewStrat: Interp1DStrategyBuilder<Sd, Sx, D>,
    {
        let Interp1DBuilder { x, data, .. } = self;
        Interp1DBuilder { x, data, strategy }
    }
    /// Validate input data and create the configured [Interp1D]
    pub fn build(self) -> Result<Interp1D<Sd, Sx, D, Strat::FinishedStrat>, BuilderError> {
        use self::Monotonic::*;
        use BuilderError::*;
        let Interp1DBuilder { x, data, strategy } = self;
        if data.ndim() < 1 {
            return Err(DimensionError(
                "data dimension is 0, needs to be at least 1".into(),
            ));
        }
        if data.shape()[0] < Strat::MINIMUM_DATA_LENGHT {
            return Err(NotEnoughData(format!(
                "The chosen Interpolation strategy needs at least {} data points",
                Strat::MINIMUM_DATA_LENGHT
            )));
        }
        if !matches!(x.monotonic_prop(), Rising { strict: true }) {
            return Err(Monotonic(
                "Values in the x axis need to be strictly monotonic rising".into(),
            ));
        }
        if x.len() != data.shape()[0] {
            return Err(BuilderError::AxisLenght(format!(
                "Lengths of x and data axis need to match. Got x: {:}, data: {:}",
                x.len(),
                data.shape()[0],
            )));
        }
        let strategy = strategy.build(&x, &data)?;
        Ok(Interp1D { x, data, strategy })
    }
}