1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
//! A collection of structs and traits to interpolate data along the first axis
//!
//! # Interpolator
//!  - [`Interp1D`] The interpolator used with any strategy
//!  - [`Interp1DBuilder`] Configure the interpolator
//!
//! # Traits
//!  - [`Interp1DStrategy`] The trait used to specialize [`Interp1D`] with the correct strategy
//!  - [`Interp1DStrategyBuilder`] The trait used to specialize [`Interp1DBuilder`] to initialize the correct strategy
//!
//! # Strategies
//!  - [`Linear`] Linear interpolation strategy
//!  - [`CubicSpline`] Cubic spline interpolation strategy

use std::{fmt::Debug, ops::Sub};

use ndarray::{
    Array, ArrayBase, ArrayView, Axis, AxisDescription, Data, DimAdd, Dimension, IntoDimension,
    Ix1, OwnedRepr, RemoveAxis, Slice,
};
use num_traits::{cast, Num, NumCast};

use crate::{
    vector_extensions::{Monotonic, VectorExtensions},
    BuilderError, InterpolateError,
};

mod aliases;
mod strategies;
pub use aliases::*;
pub use strategies::{CubicSpline, Interp1DStrategy, Interp1DStrategyBuilder, Linear};

/// One dimensional interpolator
#[derive(Debug)]
pub struct Interp1D<Sd, Sx, D, Strat>
where
    Sd: Data,
    Sd::Elem: Num + Debug,
    Sx: Data<Elem = Sd::Elem>,
    D: Dimension,
    Strat: Interp1DStrategy<Sd, Sx, D>,
{
    /// x values are guaranteed to be strict monotonically rising
    x: ArrayBase<Sx, Ix1>,
    data: ArrayBase<Sd, D>,
    strategy: Strat,
}

impl<Sd, Sx, Strat> Interp1D<Sd, Sx, Ix1, Strat>
where
    Sd: Data,
    Sd::Elem: Num + PartialOrd + NumCast + Copy + Debug + Sub,
    Sx: Data<Elem = Sd::Elem>,
    Strat: Interp1DStrategy<Sd, Sx, Ix1>,
{
    /// convinient interpolation function for interpolation at one point
    /// when the data dimension is [`type@Ix1`]
    ///
    /// ```rust
    /// # use ndarray_interp::*;
    /// # use ndarray_interp::interp1d::*;
    /// # use ndarray::*;
    /// # use approx::*;
    /// let data = array![1.0, 1.5, 2.0];
    /// let x =    array![1.0, 2.0, 3.0];
    /// let query = 1.5;
    /// let expected = 1.25;
    ///
    /// let interpolator = Interp1DBuilder::new(data).x(x).build().unwrap();
    /// let result = interpolator.interp_scalar(query).unwrap();
    /// # assert_eq!(result, expected);
    /// ```
    pub fn interp_scalar(&self, x: Sx::Elem) -> Result<Sd::Elem, InterpolateError> {
        Ok(*self.interp(x)?.first().unwrap_or_else(|| unreachable!()))
    }
}

impl<Sd, D> Interp1D<Sd, OwnedRepr<Sd::Elem>, D, Linear>
where
    Sd: Data,
    Sd::Elem: Num + PartialOrd + NumCast + Copy + Debug,
    D: Dimension + RemoveAxis,
{
    /// Get the [Interp1DBuilder]
    pub fn builder(data: ArrayBase<Sd, D>) -> Interp1DBuilder<Sd, OwnedRepr<Sd::Elem>, D, Linear> {
        Interp1DBuilder::new(data)
    }
}

impl<Sd, Sx, D, Strat> Interp1D<Sd, Sx, D, Strat>
where
    Sd: Data,
    Sd::Elem: Num + PartialOrd + NumCast + Copy + Debug + Sub,
    Sx: Data<Elem = Sd::Elem>,
    D: Dimension + RemoveAxis,
    Strat: Interp1DStrategy<Sd, Sx, D>,
{
    /// Create a interpolator without any data validation. This is fast and cheap.
    ///
    /// The following data properties are assumed, but not checked:
    /// `x` is stricktly monotonic rising and `data.shape()[0] == x.len()`
    pub fn new_unchecked(x: ArrayBase<Sx, Ix1>, data: ArrayBase<Sd, D>, strategy: Strat) -> Self {
        Interp1D { x, data, strategy }
    }

    /// Calculate the interpolated values at `x`.
    /// Returns the interpolated data in an array one dimension smaller than
    /// the data dimension.
    ///
    /// ```rust
    /// # use ndarray_interp::*;
    /// # use ndarray_interp::interp1d::*;
    /// # use ndarray::*;
    /// # use approx::*;
    /// // data has 2 dimension:
    /// let data = array![
    ///     [0.0, 2.0, 4.0],
    ///     [0.5, 2.5, 3.5],
    ///     [1.0, 3.0, 3.0],
    /// ];
    /// let query = 0.5;
    /// let expected = array![0.25, 2.25, 3.75];
    ///
    /// let interpolator = Interp1DBuilder::new(data).build().unwrap();
    /// let result = interpolator.interp(query).unwrap();
    /// # assert_abs_diff_eq!(result, expected, epsilon=f64::EPSILON);
    /// ```
    ///
    /// Concider using [`interp_scalar(x)`](Interp1D::interp_scalar)
    /// when the data dimension is [`type@Ix1`]
    pub fn interp(&self, x: Sx::Elem) -> Result<Array<Sd::Elem, D::Smaller>, InterpolateError> {
        let dim = self.data.raw_dim().remove_axis(Axis(0));
        let mut target: Array<Sd::Elem, _> = Array::zeros(dim);
        self.strategy
            .interp_into(self, target.view_mut(), x)
            .map(|_| target)
    }

    /// Calculate the interpolated values at all points in `xs`
    ///
    /// ```rust
    /// # use ndarray_interp::*;
    /// # use ndarray_interp::interp1d::*;
    /// # use ndarray::*;
    /// # use approx::*;
    /// let data =     array![0.0,  0.5, 1.0 ];
    /// let x =        array![0.0,  1.0, 2.0 ];
    /// let query =    array![0.5,  1.0, 1.5 ];
    /// let expected = array![0.25, 0.5, 0.75];
    ///
    /// let interpolator = Interp1DBuilder::new(data)
    ///     .x(x)
    ///     .strategy(Linear::new())
    ///     .build().unwrap();
    /// let result = interpolator.interp_array(&query).unwrap();
    /// # assert_abs_diff_eq!(result, expected, epsilon=f64::EPSILON);
    /// ```
    ///
    /// # Dimensions
    /// given the data dimension is `N` and the dimension of `xs` is `M`
    /// the return array will have dimension `M + N - 1` where the first
    /// `M` dimensions correspond to the dimensions of `xs`.
    ///
    /// ```rust
    /// # use ndarray_interp::*;
    /// # use ndarray_interp::interp1d::*;
    /// # use ndarray::*;
    /// # use approx::*;
    /// // data has 2 dimension:
    /// let data = array![
    ///     [0.0, 2.0],
    ///     [0.5, 2.5],
    ///     [1.0, 3.0],
    /// ];
    /// let x = array![
    ///     0.0,
    ///     1.0,
    ///     2.0,
    /// ];
    /// // query with 2 dimensions:
    /// let query = array![
    ///     [0.0, 0.5],
    ///     [1.0, 1.5],
    /// ];
    /// // expecting 3 dimensions!
    /// let expected = array![
    ///     [[0.0, 2.0], [0.25, 2.25]], // result for x=[0.0, 0.5]
    ///     [[0.5, 2.5], [0.75, 2.75]], // result for x=[1.0, 1.5]
    /// ];
    ///
    /// let interpolator = Interp1DBuilder::new(data)
    ///     .x(x)
    ///     .strategy(Linear::new())
    ///     .build().unwrap();
    /// let result = interpolator.interp_array(&query).unwrap();
    /// # assert_abs_diff_eq!(result, expected, epsilon=f64::EPSILON);
    /// ```
    pub fn interp_array<Sq, Dq>(
        &self,
        xs: &ArrayBase<Sq, Dq>,
    ) -> Result<Array<Sd::Elem, <Dq as DimAdd<D::Smaller>>::Output>, InterpolateError>
    where
        Sq: Data<Elem = Sd::Elem>,
        Dq: Dimension + DimAdd<D::Smaller>,
    {
        let mut dim = <Dq as DimAdd<D::Smaller>>::Output::default();
        dim.as_array_view_mut()
            .into_iter()
            .zip(xs.shape().iter().chain(self.data.shape()[1..].iter()))
            .for_each(|(new_axis, &len)| {
                *new_axis = len;
            });
        let mut ys = Array::zeros(dim);

        // Perform interpolation for each index
        for (index, &x) in xs.indexed_iter() {
            let current_dim = index.clone().into_dimension();
            let subview =
                ys.slice_each_axis_mut(|AxisDescription { axis: Axis(nr), .. }| match current_dim
                    .as_array_view()
                    .get(nr)
                {
                    Some(idx) => Slice::from(*idx..*idx + 1),
                    None => Slice::from(..),
                });

            self.strategy.interp_into(
                self,
                subview
                    .into_shape(self.data.raw_dim().remove_axis(Axis(0)))
                    .unwrap_or_else(|_| unreachable!()),
                x,
            )?;
        }

        Ok(ys)
    }

    /// get `(x, data)` coordinate at given index
    ///
    /// # panics
    /// when index out of bounds
    pub fn index_point(&self, index: usize) -> (Sx::Elem, ArrayView<Sd::Elem, D::Smaller>) {
        let view = self.data.index_axis(Axis(0), index);
        (self.x[index], view)
    }

    /// The index of a known value left of, or at x.
    ///
    /// This will never return the right most index,
    /// so calling [`index_point(idx+1)`](Interp1D::index_point) is always safe.
    pub fn get_index_left_of(&self, x: Sx::Elem) -> usize {
        self.x.get_lower_index(x)
    }

    pub fn is_in_range(&self, x: Sx::Elem) -> bool {
        self.x[0] <= x && x <= self.x[self.x.len() - 1]
    }
}

/// Create and configure a [Interp1D] Interpolator.
///
/// # Default configuration
/// In the default configuration the interpolation strategy is [`Linear{extrapolate: false}`].
/// The data will be interpolated along [`Axis(0)`] (currently this can not be changed).
/// The index to `Axis(0)` of the data will be used as x values.
#[derive(Debug)]
pub struct Interp1DBuilder<Sd, Sx, D, Strat>
where
    Sd: Data,
    Sd::Elem: Num + Debug,
    Sx: Data<Elem = Sd::Elem>,
    D: Dimension,
{
    x: ArrayBase<Sx, Ix1>,
    data: ArrayBase<Sd, D>,
    strategy: Strat,
}

impl<Sd, D> Interp1DBuilder<Sd, OwnedRepr<Sd::Elem>, D, Linear>
where
    Sd: Data,
    Sd::Elem: Num + PartialOrd + NumCast + Copy + Debug,
    D: Dimension,
{
    /// Create a new [Interp1DBuilder] and provide the data to interpolate.
    /// When nothing else is configured [Interp1DBuilder::build] will create an Interpolator using
    /// Linear Interpolation without extrapolation. As x axis the index to the data will be used.
    /// On multidimensional data interpolation happens along the first axis.
    pub fn new(data: ArrayBase<Sd, D>) -> Self {
        let len = data.shape()[0];
        Interp1DBuilder {
            x: Array::from_iter((0..len).map(|n| {
                cast(n).unwrap_or_else(|| {
                    unimplemented!("casting from usize to a number should always work")
                })
            })),
            data,
            strategy: Linear::new(),
        }
    }
}

impl<Sd, Sx, D, Strat> Interp1DBuilder<Sd, Sx, D, Strat>
where
    Sd: Data,
    Sd::Elem: Num + PartialOrd + NumCast + Copy + Debug,
    Sx: Data<Elem = Sd::Elem>,
    D: Dimension,
    Strat: Interp1DStrategyBuilder<Sd, Sx, D>,
{
    /// Add an custom x axis for the data. The axis needs to have the same lenght
    /// and store the same Type as the data. `x`  must be strict monotonic rising.
    /// If the x axis is not set the index `0..data.len() - 1` is used
    pub fn x<NewSx>(self, x: ArrayBase<NewSx, Ix1>) -> Interp1DBuilder<Sd, NewSx, D, Strat>
    where
        NewSx: Data<Elem = Sd::Elem>,
    {
        let Interp1DBuilder { data, strategy, .. } = self;
        Interp1DBuilder { x, data, strategy }
    }

    /// Set the interpolation strategy by providing a [Interp1DStrategyBuilder].
    /// By default [Linear] with `Linear{extrapolate: false}` is used.
    pub fn strategy<NewStrat>(self, strategy: NewStrat) -> Interp1DBuilder<Sd, Sx, D, NewStrat>
    where
        NewStrat: Interp1DStrategyBuilder<Sd, Sx, D>,
    {
        let Interp1DBuilder { x, data, .. } = self;
        Interp1DBuilder { x, data, strategy }
    }

    /// Validate input data and create the configured [Interp1D]
    pub fn build(self) -> Result<Interp1D<Sd, Sx, D, Strat::FinishedStrat>, BuilderError> {
        use self::Monotonic::*;
        use BuilderError::*;

        let Interp1DBuilder { x, data, strategy } = self;

        if data.ndim() < 1 {
            return Err(DimensionError(
                "data dimension is 0, needs to be at least 1".into(),
            ));
        }
        if data.shape()[0] < Strat::MINIMUM_DATA_LENGHT {
            return Err(NotEnoughData(format!(
                "The chosen Interpolation strategy needs at least {} data points",
                Strat::MINIMUM_DATA_LENGHT
            )));
        }
        if !matches!(x.monotonic_prop(), Rising { strict: true }) {
            return Err(Monotonic(
                "Values in the x axis need to be strictly monotonic rising".into(),
            ));
        }
        if x.len() != data.shape()[0] {
            return Err(BuilderError::AxisLenght(format!(
                "Lengths of x and data axis need to match. Got x: {:}, data: {:}",
                x.len(),
                data.shape()[0],
            )));
        }

        let strategy = strategy.build(&x, &data)?;
        Ok(Interp1D { x, data, strategy })
    }
}