1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
//! Strategies used by [`GridBuilder`] to infer optimal parameters from data for building [`Bins`]
//! and [`Grid`] instances.
//!
//! The docs for each strategy have been taken almost verbatim from [`NumPy`].
//!
//! Each strategy specifies how to compute the optimal number of [`Bins`] or the optimal bin width.
//! For those strategies that prescribe the optimal number of [`Bins`], the optimal bin width is
//! computed by `bin_width = (max - min)/n`.
//!
//! Since all bins are left-closed and right-open, it is guaranteed to add an extra bin to include
//! the maximum value from the given data when necessary, so that no data is discarded.
//!
//! # Strategies
//!
//! Currently, the following strategies are implemented:
//!
//! - [`Auto`]: Maximum of the [`Sturges`] and [`FreedmanDiaconis`] strategies. Provides good all
//!   around performance.
//! - [`FreedmanDiaconis`]: Robust (resilient to outliers) strategy that takes into account data
//!   variability and data size.
//! - [`Rice`]: A strategy that does not take variability into account, only data size. Commonly
//!   overestimates number of bins required.
//! - [`Sqrt`]: Square root (of data size) strategy, used by Excel and other programs
//!   for its speed and simplicity.
//! - [`Sturges`]: R’s default strategy, only accounts for data size. Only optimal for gaussian data
//!   and underestimates number of bins for large non-gaussian datasets.
//!
//! # Notes
//!
//! In general, successful inference on optimal bin width and number of bins relies on
//! **variability** of data. In other word, the provided observations should not be empty or
//! constant.
//!
//! In addition, [`Auto`] and [`FreedmanDiaconis`] requires the [`interquartile range (IQR)`][iqr],
//! i.e. the difference between upper and lower quartiles, to be positive.
//!
//! [`GridBuilder`]: ../struct.GridBuilder.html
//! [`Bins`]: ../struct.Bins.html
//! [`Grid`]: ../struct.Grid.html
//! [`NumPy`]: https://docs.scipy.org/doc/numpy/reference/generated/numpy.histogram_bin_edges.html#numpy.histogram_bin_edges
//! [`Auto`]: struct.Auto.html
//! [`Sturges`]: struct.Sturges.html
//! [`FreedmanDiaconis`]: struct.FreedmanDiaconis.html
//! [`Rice`]: struct.Rice.html
//! [`Sqrt`]: struct.Sqrt.html
//! [iqr]: https://www.wikiwand.com/en/Interquartile_range
#![warn(missing_docs, clippy::all, clippy::pedantic)]

use crate::{
	histogram::{errors::BinsBuildError, Bins, Edges},
	quantile::{interpolate::Nearest, Quantile1dExt, QuantileExt},
};
use ndarray::{prelude::*, Data};
use num_traits::{FromPrimitive, NumOps, ToPrimitive, Zero};

/// A trait implemented by all strategies to build [`Bins`] with parameters inferred from
/// observations.
///
/// This is required by [`GridBuilder`] to know how to build a [`Grid`]'s projections on the
/// coordinate axes.
///
/// [`Bins`]: ../struct.Bins.html
/// [`GridBuilder`]: ../struct.GridBuilder.html
/// [`Grid`]: ../struct.Grid.html
pub trait BinsBuildingStrategy {
	#[allow(missing_docs)]
	type Elem: Ord + Send;
	/// Returns a strategy that has learnt the required parameter for building [`Bins`] for given
	/// 1-dimensional array, or an `Err` if it is not possible to infer the required parameter
	/// with the given data and specified strategy.
	///
	/// Calls [`Self::from_array_with_max`] with `max_n_bins` of [`u16::MAX`].
	///
	/// # Errors
	///
	/// See each of the `struct`-level documentation for details on errors an implementation may
	/// return.
	///
	/// [`Bins`]: ../struct.Bins.html
	fn from_array<S>(array: &ArrayBase<S, Ix1>) -> Result<Self, BinsBuildError>
	where
		S: Data<Elem = Self::Elem>,
		Self: std::marker::Sized,
	{
		Self::from_array_with_max(array, u16::MAX.into())
	}

	/// Returns a strategy that has learnt the required parameter for building [`Bins`] for given
	/// 1-dimensional array, or an `Err` if it is not possible to infer the required parameter
	/// with the given data and specified strategy.
	///
	/// # Errors
	///
	/// See each of the `struct`-level documentation for details on errors an implementation may
	/// return. Fails if the strategy requires more bins than `max_n_bins`.
	///
	/// [`Bins`]: ../struct.Bins.html
	fn from_array_with_max<S>(
		array: &ArrayBase<S, Ix1>,
		max_n_bins: usize,
	) -> Result<Self, BinsBuildError>
	where
		S: Data<Elem = Self::Elem>,
		Self: std::marker::Sized;

	/// Returns a [`Bins`] instance, according to parameters inferred from observations.
	///
	/// [`Bins`]: ../struct.Bins.html
	fn build(&self) -> Bins<Self::Elem>;

	/// Returns the optimal number of bins, according to parameters inferred from observations.
	fn n_bins(&self) -> usize;
}

#[derive(Debug)]
struct EquiSpaced<T> {
	bin_width: T,
	min: T,
	max: T,
}

/// Square root (of data size) strategy, used by Excel and other programs for its speed and
/// simplicity.
///
/// Let `n` be the number of observations. Then
///
/// `n_bins` = `sqrt(n)`
///
/// # Notes
///
/// This strategy requires the data
///
/// - not being empty
/// - not being constant
#[derive(Debug)]
pub struct Sqrt<T> {
	builder: EquiSpaced<T>,
}

/// A strategy that does not take variability into account, only data size. Commonly
/// overestimates number of bins required.
///
/// Let `n` be the number of observations and `n_bins` be the number of bins.
///
/// `n_bins` = 2`n`<sup>1/3</sup>
///
/// `n_bins` is only proportional to cube root of `n`. It tends to overestimate
/// the `n_bins` and it does not take into account data variability.
///
/// # Notes
///
/// This strategy requires the data
///
/// - not being empty
/// - not being constant
#[derive(Debug)]
pub struct Rice<T> {
	builder: EquiSpaced<T>,
}

/// R’s default strategy, only accounts for data size. Only optimal for gaussian data and
/// underestimates number of bins for large non-gaussian datasets.
///
/// Let `n` be the number of observations.
/// The number of bins is 1 plus the base 2 log of `n`. This estimator assumes normality of data and
/// is too conservative for larger, non-normal datasets.
///
/// This is the default method in R’s hist method.
///
/// # Notes
///
/// This strategy requires the data
///
/// - not being empty
/// - not being constant
#[derive(Debug)]
pub struct Sturges<T> {
	builder: EquiSpaced<T>,
}

/// Robust (resilient to outliers) strategy that takes into account data variability and data size.
///
/// Let `n` be the number of observations and `at = 1 / 4`.
///
/// `bin_width` = (1 - 2 × `at`) × `IQR` × `n`<sup>−1/3</sup>
///
/// The bin width is proportional to the interquartile range ([`IQR`]) from `at` to `1 - at` and
/// inversely proportional to cube root of `n`. It can be too conservative for small datasets, but
/// it is quite good for large datasets. In case the [`IQR`] is close to zero, `at` is halved and an
/// improper [`IQR`] is computed. This is repeated as long as `at >= 1 / 512`. If no [`IQR`] is
/// found by then, Scott's rule is used as asymptotic resort which is based on the standard
/// deviation (SD). If the SD is close to zero as well, this strategy fails with
/// [`BinsBuildError::Strategy`]. As there is no one-fit-all epsilon, whether the IQR or standard
/// deviation is close to zero is indirectly tested by requiring the computed number of bins to not
/// exceed `max_n_bins` with a default of [`u16::MAX`].
///
/// The [`IQR`] is very robust to outliers.
///
/// # Notes
///
/// This strategy requires the data
///
/// - not being empty
/// - not being constant
/// - having positive [`IQR`]
///
/// [`IQR`]: https://en.wikipedia.org/wiki/Interquartile_range
#[derive(Debug)]
pub struct FreedmanDiaconis<T> {
	builder: EquiSpaced<T>,
}

#[derive(Debug)]
enum SturgesOrFD<T> {
	Sturges(Sturges<T>),
	FreedmanDiaconis(FreedmanDiaconis<T>),
}

/// Maximum of the [`Sturges`] and [`FreedmanDiaconis`] strategies. Provides good all around
/// performance.
///
/// A compromise to get a good value. For small datasets the [`Sturges`] value will usually be
/// chosen, while larger datasets will usually default to [`FreedmanDiaconis`]. Avoids the overly
/// conservative behaviour of [`FreedmanDiaconis`] and [`Sturges`] for small and large datasets
/// respectively.
///
/// # Notes
///
/// This strategy requires the data
///
/// - not being empty
/// - not being constant
/// - having positive [`IQR`]
///
/// [`Sturges`]: struct.Sturges.html
/// [`FreedmanDiaconis`]: struct.FreedmanDiaconis.html
/// [`IQR`]: https://en.wikipedia.org/wiki/Interquartile_range
#[derive(Debug)]
pub struct Auto<T> {
	builder: SturgesOrFD<T>,
}

impl<T> EquiSpaced<T>
where
	T: Ord + Send + Clone + FromPrimitive + ToPrimitive + NumOps + Zero,
{
	/// Returns `Err(BinsBuildError::Strategy)` if `bin_width<=0` or `min` >= `max`.
	/// Returns `Ok(Self)` otherwise.
	fn new(bin_width: T, min: T, max: T) -> Result<Self, BinsBuildError> {
		if (bin_width <= T::zero()) || (min >= max) {
			Err(BinsBuildError::Strategy)
		} else {
			Ok(Self {
				bin_width,
				min,
				max,
			})
		}
	}

	fn build(&self) -> Bins<T> {
		let n_bins = self.n_bins();
		let mut edges: Vec<T> = vec![];
		for i in 0..=n_bins {
			let edge = self.min.clone() + T::from_usize(i).unwrap() * self.bin_width.clone();
			edges.push(edge);
		}
		Bins::new(Edges::from(edges))
	}

	fn n_bins(&self) -> usize {
		let min = self.min.to_f64().unwrap();
		let max = self.max.to_f64().unwrap();
		let bin_width = self.bin_width.to_f64().unwrap();
		usize::from_f64(((max - min) / bin_width + 0.5).ceil()).unwrap_or(usize::MAX)
	}

	fn bin_width(&self) -> T {
		self.bin_width.clone()
	}
}

impl<T> BinsBuildingStrategy for Sqrt<T>
where
	T: Ord + Send + Clone + FromPrimitive + ToPrimitive + NumOps + Zero,
{
	type Elem = T;

	/// Returns `Err(BinsBuildError::Strategy)` if the array is constant.
	/// Returns `Err(BinsBuildError::EmptyInput)` if `a.len()==0`.
	/// Returns `Ok(Self)` otherwise.
	fn from_array_with_max<S>(
		a: &ArrayBase<S, Ix1>,
		max_n_bins: usize,
	) -> Result<Self, BinsBuildError>
	where
		S: Data<Elem = Self::Elem>,
	{
		let n_elems = a.len();
		// casting `n_elems: usize` to `f64` may casus off-by-one error here if `n_elems` > 2 ^ 53,
		// but it's not relevant here
		#[allow(clippy::cast_precision_loss)]
		// casting the rounded square root from `f64` to `usize` is safe
		#[allow(clippy::cast_possible_truncation, clippy::cast_sign_loss)]
		let n_bins = (n_elems as f64).sqrt().round() as usize;
		let min = a.min()?;
		let max = a.max()?;
		let bin_width = compute_bin_width(min.clone(), max.clone(), n_bins);
		let builder = EquiSpaced::new(bin_width, min.clone(), max.clone())?;
		if builder.n_bins() > max_n_bins {
			Err(BinsBuildError::Strategy)
		} else {
			Ok(Self { builder })
		}
	}

	fn build(&self) -> Bins<T> {
		self.builder.build()
	}

	fn n_bins(&self) -> usize {
		self.builder.n_bins()
	}
}

impl<T> Sqrt<T>
where
	T: Ord + Send + Clone + FromPrimitive + ToPrimitive + NumOps + Zero,
{
	/// The bin width (or bin length) according to the fitted strategy.
	pub fn bin_width(&self) -> T {
		self.builder.bin_width()
	}
}

impl<T> BinsBuildingStrategy for Rice<T>
where
	T: Ord + Send + Clone + FromPrimitive + ToPrimitive + NumOps + Zero,
{
	type Elem = T;

	/// Returns `Err(BinsBuildError::Strategy)` if the array is constant.
	/// Returns `Err(BinsBuildError::EmptyInput)` if `a.len()==0`.
	/// Returns `Ok(Self)` otherwise.
	fn from_array_with_max<S>(
		a: &ArrayBase<S, Ix1>,
		max_n_bins: usize,
	) -> Result<Self, BinsBuildError>
	where
		S: Data<Elem = Self::Elem>,
	{
		let n_elems = a.len();
		// casting `n_elems: usize` to `f64` may casus off-by-one error here if `n_elems` > 2 ^ 53,
		// but it's not relevant here
		#[allow(clippy::cast_precision_loss)]
		// casting the rounded cube root from `f64` to `usize` is safe
		#[allow(clippy::cast_possible_truncation, clippy::cast_sign_loss)]
		let n_bins = (2. * (n_elems as f64).powf(1. / 3.)).round() as usize;
		let min = a.min()?;
		let max = a.max()?;
		let bin_width = compute_bin_width(min.clone(), max.clone(), n_bins);
		let builder = EquiSpaced::new(bin_width, min.clone(), max.clone())?;
		if builder.n_bins() > max_n_bins {
			Err(BinsBuildError::Strategy)
		} else {
			Ok(Self { builder })
		}
	}

	fn build(&self) -> Bins<T> {
		self.builder.build()
	}

	fn n_bins(&self) -> usize {
		self.builder.n_bins()
	}
}

impl<T> Rice<T>
where
	T: Ord + Send + Clone + FromPrimitive + ToPrimitive + NumOps + Zero,
{
	/// The bin width (or bin length) according to the fitted strategy.
	pub fn bin_width(&self) -> T {
		self.builder.bin_width()
	}
}

impl<T> BinsBuildingStrategy for Sturges<T>
where
	T: Ord + Send + Clone + FromPrimitive + ToPrimitive + NumOps + Zero,
{
	type Elem = T;

	/// Returns `Err(BinsBuildError::Strategy)` if the array is constant.
	/// Returns `Err(BinsBuildError::EmptyInput)` if `a.len()==0`.
	/// Returns `Ok(Self)` otherwise.
	fn from_array_with_max<S>(
		a: &ArrayBase<S, Ix1>,
		max_n_bins: usize,
	) -> Result<Self, BinsBuildError>
	where
		S: Data<Elem = Self::Elem>,
	{
		let n_elems = a.len();
		// casting `n_elems: usize` to `f64` may casus off-by-one error here if `n_elems` > 2 ^ 53,
		// but it's not relevant here
		#[allow(clippy::cast_precision_loss)]
		// casting the rounded base-2 log from `f64` to `usize` is safe
		#[allow(clippy::cast_possible_truncation, clippy::cast_sign_loss)]
		let n_bins = (n_elems as f64).log2().round() as usize + 1;
		let min = a.min()?;
		let max = a.max()?;
		let bin_width = compute_bin_width(min.clone(), max.clone(), n_bins);
		let builder = EquiSpaced::new(bin_width, min.clone(), max.clone())?;
		if builder.n_bins() > max_n_bins {
			Err(BinsBuildError::Strategy)
		} else {
			Ok(Self { builder })
		}
	}

	fn build(&self) -> Bins<T> {
		self.builder.build()
	}

	fn n_bins(&self) -> usize {
		self.builder.n_bins()
	}
}

impl<T> Sturges<T>
where
	T: Ord + Send + Clone + FromPrimitive + ToPrimitive + NumOps + Zero,
{
	/// The bin width (or bin length) according to the fitted strategy.
	pub fn bin_width(&self) -> T {
		self.builder.bin_width()
	}
}

impl<T> BinsBuildingStrategy for FreedmanDiaconis<T>
where
	T: Ord + Send + Clone + FromPrimitive + ToPrimitive + NumOps + Zero,
{
	type Elem = T;

	/// Returns `Err(BinsBuildError::Strategy)` if improper IQR and SD are close to zero.
	/// Returns `Err(BinsBuildError::EmptyInput)` if `a.len()==0`.
	/// Returns `Ok(Self)` otherwise.
	fn from_array<S>(a: &ArrayBase<S, Ix1>) -> Result<Self, BinsBuildError>
	where
		S: Data<Elem = Self::Elem>,
	{
		Self::from_array_with_max(a, u16::MAX.into())
	}

	/// Returns `Err(BinsBuildError::Strategy)` if improper IQR and SD are close to zero.
	/// Returns `Err(BinsBuildError::EmptyInput)` if `a.len()==0`.
	/// Returns `Ok(Self)` otherwise.
	fn from_array_with_max<S>(
		a: &ArrayBase<S, Ix1>,
		max_n_bins: usize,
	) -> Result<Self, BinsBuildError>
	where
		S: Data<Elem = Self::Elem>,
	{
		let n_points = a.len();
		if n_points == 0 {
			return Err(BinsBuildError::EmptyInput);
		}

		let n_cbrt = f64::from_usize(n_points).unwrap().powf(1. / 3.);
		let min = a.min()?;
		let max = a.max()?;
		let mut a_copy = a.to_owned();
		// As there is no one-fit-all epsilon to decide whether IQR is zero, translate it into
		// number of bins and compare it against `max_n_bins`. More bins than `max_n_bins` is a hint
		// for an IQR close to zero. If so, deviate from proper Freedman-Diaconis rule by widening
		// percentiles range and try again with `at` of 1/8, 1/16, 1/32, 1/64, 1/128, 1/256, 1/512.
		let mut at = 0.5;
		while at >= 1. / 512. {
			at *= 0.5;
			let first_quartile = a_copy.quantile_mut(at, &Nearest).unwrap();
			let third_quartile = a_copy.quantile_mut(1. - at, &Nearest).unwrap();
			let iqr = third_quartile - first_quartile;
			let denom = T::from_f64((1. - 2. * at) * n_cbrt).unwrap();
			if denom == T::zero() {
				continue;
			}
			let bin_width = iqr.clone() / denom;
			let builder = EquiSpaced::new(bin_width, min.clone(), max.clone())?;
			if builder.n_bins() > max_n_bins {
				continue;
			}
			return Ok(Self { builder });
		}
		// If the improper IQR is still close to zero, use Scott's rule as asymptotic resort before
		// giving up where `m` is the mean and `s` its SD.
		let m = a.iter().cloned().fold(T::zero(), |s, v| s + v) / T::from_usize(n_points).unwrap();
		let s = a
			.iter()
			.cloned()
			.map(|v| (v.clone() - m.clone()) * (v - m.clone()))
			.fold(T::zero(), |s, v| s + v);
		let s = (s / T::from_usize(n_points - 1).unwrap())
			.to_f64()
			.unwrap()
			.sqrt();
		let bin_width = T::from_f64(3.49 * s).unwrap() / T::from_f64(n_cbrt).unwrap();
		let builder = EquiSpaced::new(bin_width, min.clone(), max.clone())?;
		if builder.n_bins() > max_n_bins {
			return Err(BinsBuildError::Strategy);
		}
		Ok(Self { builder })
	}

	fn build(&self) -> Bins<T> {
		self.builder.build()
	}

	fn n_bins(&self) -> usize {
		self.builder.n_bins()
	}
}

impl<T> FreedmanDiaconis<T>
where
	T: Ord + Send + Clone + FromPrimitive + ToPrimitive + NumOps + Zero,
{
	/// The bin width (or bin length) according to the fitted strategy.
	pub fn bin_width(&self) -> T {
		self.builder.bin_width()
	}
}

impl<T> BinsBuildingStrategy for Auto<T>
where
	T: Ord + Send + Clone + FromPrimitive + ToPrimitive + NumOps + Zero,
{
	type Elem = T;

	/// Returns `Err(BinsBuildError::Strategy)` if `IQR==0`.
	/// Returns `Err(BinsBuildError::EmptyInput)` if `a.len()==0`.
	/// Returns `Ok(Self)` otherwise.
	fn from_array_with_max<S>(
		a: &ArrayBase<S, Ix1>,
		max_n_bins: usize,
	) -> Result<Self, BinsBuildError>
	where
		S: Data<Elem = Self::Elem>,
	{
		let fd_builder = FreedmanDiaconis::from_array_with_max(a, max_n_bins);
		let sturges_builder = Sturges::from_array_with_max(a, max_n_bins);
		match (fd_builder, sturges_builder) {
			(Err(_), Ok(sturges_builder)) => {
				let builder = SturgesOrFD::Sturges(sturges_builder);
				Ok(Self { builder })
			}
			(Ok(fd_builder), Err(_)) => {
				let builder = SturgesOrFD::FreedmanDiaconis(fd_builder);
				Ok(Self { builder })
			}
			(Ok(fd_builder), Ok(sturges_builder)) => {
				let builder = if fd_builder.bin_width() > sturges_builder.bin_width() {
					SturgesOrFD::Sturges(sturges_builder)
				} else {
					SturgesOrFD::FreedmanDiaconis(fd_builder)
				};
				Ok(Self { builder })
			}
			(Err(err), Err(_)) => Err(err),
		}
	}

	fn build(&self) -> Bins<T> {
		// Ugly
		match &self.builder {
			SturgesOrFD::FreedmanDiaconis(b) => b.build(),
			SturgesOrFD::Sturges(b) => b.build(),
		}
	}

	fn n_bins(&self) -> usize {
		// Ugly
		match &self.builder {
			SturgesOrFD::FreedmanDiaconis(b) => b.n_bins(),
			SturgesOrFD::Sturges(b) => b.n_bins(),
		}
	}
}

impl<T> Auto<T>
where
	T: Ord + Send + Clone + FromPrimitive + ToPrimitive + NumOps + Zero,
{
	/// The bin width (or bin length) according to the fitted strategy.
	pub fn bin_width(&self) -> T {
		// Ugly
		match &self.builder {
			SturgesOrFD::FreedmanDiaconis(b) => b.bin_width(),
			SturgesOrFD::Sturges(b) => b.bin_width(),
		}
	}
}

/// Returns the `bin_width`, given the two end points of a range (`max`, `min`), and the number of
/// bins, consuming endpoints
///
/// `bin_width = (max - min)/n`
///
/// **Panics** if `n_bins == 0` and division by 0 panics for `T`.
fn compute_bin_width<T>(min: T, max: T, n_bins: usize) -> T
where
	T: Ord + Send + Clone + FromPrimitive + ToPrimitive + NumOps + Zero,
{
	let range = max - min;
	range / T::from_usize(n_bins).unwrap()
}

#[cfg(test)]
mod equispaced_tests {
	use super::EquiSpaced;

	#[test]
	fn bin_width_has_to_be_positive() {
		assert!(EquiSpaced::new(0, 0, 200).is_err());
	}

	#[test]
	fn min_has_to_be_strictly_smaller_than_max() {
		assert!(EquiSpaced::new(10, 0, 0).is_err());
	}
}

#[cfg(test)]
mod sqrt_tests {
	use super::{BinsBuildingStrategy, Sqrt};
	use ndarray::array;

	#[test]
	fn constant_array_are_bad() {
		assert!(Sqrt::from_array(&array![1, 1, 1, 1, 1, 1, 1])
			.unwrap_err()
			.is_strategy());
	}

	#[test]
	fn empty_arrays_are_bad() {
		assert!(Sqrt::<usize>::from_array(&array![])
			.unwrap_err()
			.is_empty_input());
	}
}

#[cfg(test)]
mod rice_tests {
	use super::{BinsBuildingStrategy, Rice};
	use ndarray::array;

	#[test]
	fn constant_array_are_bad() {
		assert!(Rice::from_array(&array![1, 1, 1, 1, 1, 1, 1])
			.unwrap_err()
			.is_strategy());
	}

	#[test]
	fn empty_arrays_are_bad() {
		assert!(Rice::<usize>::from_array(&array![])
			.unwrap_err()
			.is_empty_input());
	}
}

#[cfg(test)]
mod sturges_tests {
	use super::{BinsBuildingStrategy, Sturges};
	use ndarray::array;

	#[test]
	fn constant_array_are_bad() {
		assert!(Sturges::from_array(&array![1, 1, 1, 1, 1, 1, 1])
			.unwrap_err()
			.is_strategy());
	}

	#[test]
	fn empty_arrays_are_bad() {
		assert!(Sturges::<usize>::from_array(&array![])
			.unwrap_err()
			.is_empty_input());
	}
}

#[cfg(test)]
mod fd_tests {
	use super::{BinsBuildingStrategy, FreedmanDiaconis};
	use ndarray::array;

	#[test]
	fn constant_array_are_bad() {
		assert!(FreedmanDiaconis::from_array(&array![1, 1, 1, 1, 1, 1, 1])
			.unwrap_err()
			.is_strategy());
	}

	#[test]
	fn zero_iqr_is_bad() {
		assert!(
			FreedmanDiaconis::from_array(&array![-20, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 20])
				.unwrap_err()
				.is_strategy()
		);
	}

	#[test]
	fn empty_arrays_are_bad() {
		assert!(FreedmanDiaconis::<usize>::from_array(&array![])
			.unwrap_err()
			.is_empty_input());
	}
}

#[cfg(test)]
mod auto_tests {
	use super::{Auto, BinsBuildingStrategy};
	use ndarray::array;

	#[test]
	fn constant_array_are_bad() {
		assert!(Auto::from_array(&array![1, 1, 1, 1, 1, 1, 1])
			.unwrap_err()
			.is_strategy());
	}

	#[test]
	fn zero_iqr_is_handled_by_sturged() {
		assert!(Auto::from_array(&array![-20, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 20]).is_ok());
	}

	#[test]
	fn empty_arrays_are_bad() {
		assert!(Auto::<usize>::from_array(&array![])
			.unwrap_err()
			.is_empty_input());
	}
}