1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748
//! Strategies used by [`GridBuilder`] to infer optimal parameters from data for building [`Bins`]
//! and [`Grid`] instances.
//!
//! The docs for each strategy have been taken almost verbatim from [`NumPy`].
//!
//! Each strategy specifies how to compute the optimal number of [`Bins`] or the optimal bin width.
//! For those strategies that prescribe the optimal number of [`Bins`], the optimal bin width is
//! computed by `bin_width = (max - min)/n`.
//!
//! Since all bins are left-closed and right-open, it is guaranteed to add an extra bin to include
//! the maximum value from the given data when necessary, so that no data is discarded.
//!
//! # Strategies
//!
//! Currently, the following strategies are implemented:
//!
//! - [`Auto`]: Maximum of the [`Sturges`] and [`FreedmanDiaconis`] strategies. Provides good all
//! around performance.
//! - [`FreedmanDiaconis`]: Robust (resilient to outliers) strategy that takes into account data
//! variability and data size.
//! - [`Rice`]: A strategy that does not take variability into account, only data size. Commonly
//! overestimates number of bins required.
//! - [`Sqrt`]: Square root (of data size) strategy, used by Excel and other programs
//! for its speed and simplicity.
//! - [`Sturges`]: R’s default strategy, only accounts for data size. Only optimal for gaussian data
//! and underestimates number of bins for large non-gaussian datasets.
//!
//! # Notes
//!
//! In general, successful inference on optimal bin width and number of bins relies on
//! **variability** of data. In other word, the provided observations should not be empty or
//! constant.
//!
//! In addition, [`Auto`] and [`FreedmanDiaconis`] requires the [`interquartile range (IQR)`][iqr],
//! i.e. the difference between upper and lower quartiles, to be positive.
//!
//! [`GridBuilder`]: ../struct.GridBuilder.html
//! [`Bins`]: ../struct.Bins.html
//! [`Grid`]: ../struct.Grid.html
//! [`NumPy`]: https://docs.scipy.org/doc/numpy/reference/generated/numpy.histogram_bin_edges.html#numpy.histogram_bin_edges
//! [`Auto`]: struct.Auto.html
//! [`Sturges`]: struct.Sturges.html
//! [`FreedmanDiaconis`]: struct.FreedmanDiaconis.html
//! [`Rice`]: struct.Rice.html
//! [`Sqrt`]: struct.Sqrt.html
//! [iqr]: https://www.wikiwand.com/en/Interquartile_range
#![warn(missing_docs, clippy::all, clippy::pedantic)]
use crate::{
histogram::{errors::BinsBuildError, Bins, Edges},
quantile::{interpolate::Nearest, Quantile1dExt, QuantileExt},
};
use ndarray::{prelude::*, Data};
use num_traits::{FromPrimitive, NumOps, ToPrimitive, Zero};
/// A trait implemented by all strategies to build [`Bins`] with parameters inferred from
/// observations.
///
/// This is required by [`GridBuilder`] to know how to build a [`Grid`]'s projections on the
/// coordinate axes.
///
/// [`Bins`]: ../struct.Bins.html
/// [`GridBuilder`]: ../struct.GridBuilder.html
/// [`Grid`]: ../struct.Grid.html
pub trait BinsBuildingStrategy {
#[allow(missing_docs)]
type Elem: Ord + Send;
/// Returns a strategy that has learnt the required parameter for building [`Bins`] for given
/// 1-dimensional array, or an `Err` if it is not possible to infer the required parameter
/// with the given data and specified strategy.
///
/// Calls [`Self::from_array_with_max`] with `max_n_bins` of [`u16::MAX`].
///
/// # Errors
///
/// See each of the `struct`-level documentation for details on errors an implementation may
/// return.
///
/// [`Bins`]: ../struct.Bins.html
fn from_array<S>(array: &ArrayBase<S, Ix1>) -> Result<Self, BinsBuildError>
where
S: Data<Elem = Self::Elem>,
Self: std::marker::Sized,
{
Self::from_array_with_max(array, u16::MAX.into())
}
/// Returns a strategy that has learnt the required parameter for building [`Bins`] for given
/// 1-dimensional array, or an `Err` if it is not possible to infer the required parameter
/// with the given data and specified strategy.
///
/// # Errors
///
/// See each of the `struct`-level documentation for details on errors an implementation may
/// return. Fails if the strategy requires more bins than `max_n_bins`.
///
/// [`Bins`]: ../struct.Bins.html
fn from_array_with_max<S>(
array: &ArrayBase<S, Ix1>,
max_n_bins: usize,
) -> Result<Self, BinsBuildError>
where
S: Data<Elem = Self::Elem>,
Self: std::marker::Sized;
/// Returns a [`Bins`] instance, according to parameters inferred from observations.
///
/// [`Bins`]: ../struct.Bins.html
fn build(&self) -> Bins<Self::Elem>;
/// Returns the optimal number of bins, according to parameters inferred from observations.
fn n_bins(&self) -> usize;
}
#[derive(Debug)]
struct EquiSpaced<T> {
bin_width: T,
min: T,
max: T,
}
/// Square root (of data size) strategy, used by Excel and other programs for its speed and
/// simplicity.
///
/// Let `n` be the number of observations. Then
///
/// `n_bins` = `sqrt(n)`
///
/// # Notes
///
/// This strategy requires the data
///
/// - not being empty
/// - not being constant
#[derive(Debug)]
pub struct Sqrt<T> {
builder: EquiSpaced<T>,
}
/// A strategy that does not take variability into account, only data size. Commonly
/// overestimates number of bins required.
///
/// Let `n` be the number of observations and `n_bins` be the number of bins.
///
/// `n_bins` = 2`n`<sup>1/3</sup>
///
/// `n_bins` is only proportional to cube root of `n`. It tends to overestimate
/// the `n_bins` and it does not take into account data variability.
///
/// # Notes
///
/// This strategy requires the data
///
/// - not being empty
/// - not being constant
#[derive(Debug)]
pub struct Rice<T> {
builder: EquiSpaced<T>,
}
/// R’s default strategy, only accounts for data size. Only optimal for gaussian data and
/// underestimates number of bins for large non-gaussian datasets.
///
/// Let `n` be the number of observations.
/// The number of bins is 1 plus the base 2 log of `n`. This estimator assumes normality of data and
/// is too conservative for larger, non-normal datasets.
///
/// This is the default method in R’s hist method.
///
/// # Notes
///
/// This strategy requires the data
///
/// - not being empty
/// - not being constant
#[derive(Debug)]
pub struct Sturges<T> {
builder: EquiSpaced<T>,
}
/// Robust (resilient to outliers) strategy that takes into account data variability and data size.
///
/// Let `n` be the number of observations and `at = 1 / 4`.
///
/// `bin_width` = (1 - 2 × `at`) × `IQR` × `n`<sup>−1/3</sup>
///
/// The bin width is proportional to the interquartile range ([`IQR`]) from `at` to `1 - at` and
/// inversely proportional to cube root of `n`. It can be too conservative for small datasets, but
/// it is quite good for large datasets. In case the [`IQR`] is close to zero, `at` is halved and an
/// improper [`IQR`] is computed. This is repeated as long as `at >= 1 / 512`. If no [`IQR`] is
/// found by then, Scott's rule is used as asymptotic resort which is based on the standard
/// deviation (SD). If the SD is close to zero as well, this strategy fails with
/// [`BinsBuildError::Strategy`]. As there is no one-fit-all epsilon, whether the IQR or standard
/// deviation is close to zero is indirectly tested by requiring the computed number of bins to not
/// exceed `max_n_bins` with a default of [`u16::MAX`].
///
/// The [`IQR`] is very robust to outliers.
///
/// # Notes
///
/// This strategy requires the data
///
/// - not being empty
/// - not being constant
/// - having positive [`IQR`]
///
/// [`IQR`]: https://en.wikipedia.org/wiki/Interquartile_range
#[derive(Debug)]
pub struct FreedmanDiaconis<T> {
builder: EquiSpaced<T>,
}
#[derive(Debug)]
enum SturgesOrFD<T> {
Sturges(Sturges<T>),
FreedmanDiaconis(FreedmanDiaconis<T>),
}
/// Maximum of the [`Sturges`] and [`FreedmanDiaconis`] strategies. Provides good all around
/// performance.
///
/// A compromise to get a good value. For small datasets the [`Sturges`] value will usually be
/// chosen, while larger datasets will usually default to [`FreedmanDiaconis`]. Avoids the overly
/// conservative behaviour of [`FreedmanDiaconis`] and [`Sturges`] for small and large datasets
/// respectively.
///
/// # Notes
///
/// This strategy requires the data
///
/// - not being empty
/// - not being constant
/// - having positive [`IQR`]
///
/// [`Sturges`]: struct.Sturges.html
/// [`FreedmanDiaconis`]: struct.FreedmanDiaconis.html
/// [`IQR`]: https://en.wikipedia.org/wiki/Interquartile_range
#[derive(Debug)]
pub struct Auto<T> {
builder: SturgesOrFD<T>,
}
impl<T> EquiSpaced<T>
where
T: Ord + Send + Clone + FromPrimitive + ToPrimitive + NumOps + Zero,
{
/// Returns `Err(BinsBuildError::Strategy)` if `bin_width<=0` or `min` >= `max`.
/// Returns `Ok(Self)` otherwise.
fn new(bin_width: T, min: T, max: T) -> Result<Self, BinsBuildError> {
if (bin_width <= T::zero()) || (min >= max) {
Err(BinsBuildError::Strategy)
} else {
Ok(Self {
bin_width,
min,
max,
})
}
}
fn build(&self) -> Bins<T> {
let n_bins = self.n_bins();
let mut edges: Vec<T> = vec![];
for i in 0..=n_bins {
let edge = self.min.clone() + T::from_usize(i).unwrap() * self.bin_width.clone();
edges.push(edge);
}
Bins::new(Edges::from(edges))
}
fn n_bins(&self) -> usize {
let min = self.min.to_f64().unwrap();
let max = self.max.to_f64().unwrap();
let bin_width = self.bin_width.to_f64().unwrap();
usize::from_f64(((max - min) / bin_width + 0.5).ceil()).unwrap_or(usize::MAX)
}
fn bin_width(&self) -> T {
self.bin_width.clone()
}
}
impl<T> BinsBuildingStrategy for Sqrt<T>
where
T: Ord + Send + Clone + FromPrimitive + ToPrimitive + NumOps + Zero,
{
type Elem = T;
/// Returns `Err(BinsBuildError::Strategy)` if the array is constant.
/// Returns `Err(BinsBuildError::EmptyInput)` if `a.len()==0`.
/// Returns `Ok(Self)` otherwise.
fn from_array_with_max<S>(
a: &ArrayBase<S, Ix1>,
max_n_bins: usize,
) -> Result<Self, BinsBuildError>
where
S: Data<Elem = Self::Elem>,
{
let n_elems = a.len();
// casting `n_elems: usize` to `f64` may casus off-by-one error here if `n_elems` > 2 ^ 53,
// but it's not relevant here
#[allow(clippy::cast_precision_loss)]
// casting the rounded square root from `f64` to `usize` is safe
#[allow(clippy::cast_possible_truncation, clippy::cast_sign_loss)]
let n_bins = (n_elems as f64).sqrt().round() as usize;
let min = a.min()?;
let max = a.max()?;
let bin_width = compute_bin_width(min.clone(), max.clone(), n_bins);
let builder = EquiSpaced::new(bin_width, min.clone(), max.clone())?;
if builder.n_bins() > max_n_bins {
Err(BinsBuildError::Strategy)
} else {
Ok(Self { builder })
}
}
fn build(&self) -> Bins<T> {
self.builder.build()
}
fn n_bins(&self) -> usize {
self.builder.n_bins()
}
}
impl<T> Sqrt<T>
where
T: Ord + Send + Clone + FromPrimitive + ToPrimitive + NumOps + Zero,
{
/// The bin width (or bin length) according to the fitted strategy.
pub fn bin_width(&self) -> T {
self.builder.bin_width()
}
}
impl<T> BinsBuildingStrategy for Rice<T>
where
T: Ord + Send + Clone + FromPrimitive + ToPrimitive + NumOps + Zero,
{
type Elem = T;
/// Returns `Err(BinsBuildError::Strategy)` if the array is constant.
/// Returns `Err(BinsBuildError::EmptyInput)` if `a.len()==0`.
/// Returns `Ok(Self)` otherwise.
fn from_array_with_max<S>(
a: &ArrayBase<S, Ix1>,
max_n_bins: usize,
) -> Result<Self, BinsBuildError>
where
S: Data<Elem = Self::Elem>,
{
let n_elems = a.len();
// casting `n_elems: usize` to `f64` may casus off-by-one error here if `n_elems` > 2 ^ 53,
// but it's not relevant here
#[allow(clippy::cast_precision_loss)]
// casting the rounded cube root from `f64` to `usize` is safe
#[allow(clippy::cast_possible_truncation, clippy::cast_sign_loss)]
let n_bins = (2. * (n_elems as f64).powf(1. / 3.)).round() as usize;
let min = a.min()?;
let max = a.max()?;
let bin_width = compute_bin_width(min.clone(), max.clone(), n_bins);
let builder = EquiSpaced::new(bin_width, min.clone(), max.clone())?;
if builder.n_bins() > max_n_bins {
Err(BinsBuildError::Strategy)
} else {
Ok(Self { builder })
}
}
fn build(&self) -> Bins<T> {
self.builder.build()
}
fn n_bins(&self) -> usize {
self.builder.n_bins()
}
}
impl<T> Rice<T>
where
T: Ord + Send + Clone + FromPrimitive + ToPrimitive + NumOps + Zero,
{
/// The bin width (or bin length) according to the fitted strategy.
pub fn bin_width(&self) -> T {
self.builder.bin_width()
}
}
impl<T> BinsBuildingStrategy for Sturges<T>
where
T: Ord + Send + Clone + FromPrimitive + ToPrimitive + NumOps + Zero,
{
type Elem = T;
/// Returns `Err(BinsBuildError::Strategy)` if the array is constant.
/// Returns `Err(BinsBuildError::EmptyInput)` if `a.len()==0`.
/// Returns `Ok(Self)` otherwise.
fn from_array_with_max<S>(
a: &ArrayBase<S, Ix1>,
max_n_bins: usize,
) -> Result<Self, BinsBuildError>
where
S: Data<Elem = Self::Elem>,
{
let n_elems = a.len();
// casting `n_elems: usize` to `f64` may casus off-by-one error here if `n_elems` > 2 ^ 53,
// but it's not relevant here
#[allow(clippy::cast_precision_loss)]
// casting the rounded base-2 log from `f64` to `usize` is safe
#[allow(clippy::cast_possible_truncation, clippy::cast_sign_loss)]
let n_bins = (n_elems as f64).log2().round() as usize + 1;
let min = a.min()?;
let max = a.max()?;
let bin_width = compute_bin_width(min.clone(), max.clone(), n_bins);
let builder = EquiSpaced::new(bin_width, min.clone(), max.clone())?;
if builder.n_bins() > max_n_bins {
Err(BinsBuildError::Strategy)
} else {
Ok(Self { builder })
}
}
fn build(&self) -> Bins<T> {
self.builder.build()
}
fn n_bins(&self) -> usize {
self.builder.n_bins()
}
}
impl<T> Sturges<T>
where
T: Ord + Send + Clone + FromPrimitive + ToPrimitive + NumOps + Zero,
{
/// The bin width (or bin length) according to the fitted strategy.
pub fn bin_width(&self) -> T {
self.builder.bin_width()
}
}
impl<T> BinsBuildingStrategy for FreedmanDiaconis<T>
where
T: Ord + Send + Clone + FromPrimitive + ToPrimitive + NumOps + Zero,
{
type Elem = T;
/// Returns `Err(BinsBuildError::Strategy)` if improper IQR and SD are close to zero.
/// Returns `Err(BinsBuildError::EmptyInput)` if `a.len()==0`.
/// Returns `Ok(Self)` otherwise.
fn from_array<S>(a: &ArrayBase<S, Ix1>) -> Result<Self, BinsBuildError>
where
S: Data<Elem = Self::Elem>,
{
Self::from_array_with_max(a, u16::MAX.into())
}
/// Returns `Err(BinsBuildError::Strategy)` if improper IQR and SD are close to zero.
/// Returns `Err(BinsBuildError::EmptyInput)` if `a.len()==0`.
/// Returns `Ok(Self)` otherwise.
fn from_array_with_max<S>(
a: &ArrayBase<S, Ix1>,
max_n_bins: usize,
) -> Result<Self, BinsBuildError>
where
S: Data<Elem = Self::Elem>,
{
let n_points = a.len();
if n_points == 0 {
return Err(BinsBuildError::EmptyInput);
}
let n_cbrt = f64::from_usize(n_points).unwrap().powf(1. / 3.);
let min = a.min()?;
let max = a.max()?;
let mut a_copy = a.to_owned();
// As there is no one-fit-all epsilon to decide whether IQR is zero, translate it into
// number of bins and compare it against `max_n_bins`. More bins than `max_n_bins` is a hint
// for an IQR close to zero. If so, deviate from proper Freedman-Diaconis rule by widening
// percentiles range and try again with `at` of 1/8, 1/16, 1/32, 1/64, 1/128, 1/256, 1/512.
let mut at = 0.5;
while at >= 1. / 512. {
at *= 0.5;
let first_quartile = a_copy.quantile_mut(at, &Nearest).unwrap();
let third_quartile = a_copy.quantile_mut(1. - at, &Nearest).unwrap();
let iqr = third_quartile - first_quartile;
let denom = T::from_f64((1. - 2. * at) * n_cbrt).unwrap();
if denom == T::zero() {
continue;
}
let bin_width = iqr.clone() / denom;
let builder = EquiSpaced::new(bin_width, min.clone(), max.clone())?;
if builder.n_bins() > max_n_bins {
continue;
}
return Ok(Self { builder });
}
// If the improper IQR is still close to zero, use Scott's rule as asymptotic resort before
// giving up where `m` is the mean and `s` its SD.
let m = a.iter().cloned().fold(T::zero(), |s, v| s + v) / T::from_usize(n_points).unwrap();
let s = a
.iter()
.cloned()
.map(|v| (v.clone() - m.clone()) * (v - m.clone()))
.fold(T::zero(), |s, v| s + v);
let s = (s / T::from_usize(n_points - 1).unwrap())
.to_f64()
.unwrap()
.sqrt();
let bin_width = T::from_f64(3.49 * s).unwrap() / T::from_f64(n_cbrt).unwrap();
let builder = EquiSpaced::new(bin_width, min.clone(), max.clone())?;
if builder.n_bins() > max_n_bins {
return Err(BinsBuildError::Strategy);
}
Ok(Self { builder })
}
fn build(&self) -> Bins<T> {
self.builder.build()
}
fn n_bins(&self) -> usize {
self.builder.n_bins()
}
}
impl<T> FreedmanDiaconis<T>
where
T: Ord + Send + Clone + FromPrimitive + ToPrimitive + NumOps + Zero,
{
/// The bin width (or bin length) according to the fitted strategy.
pub fn bin_width(&self) -> T {
self.builder.bin_width()
}
}
impl<T> BinsBuildingStrategy for Auto<T>
where
T: Ord + Send + Clone + FromPrimitive + ToPrimitive + NumOps + Zero,
{
type Elem = T;
/// Returns `Err(BinsBuildError::Strategy)` if `IQR==0`.
/// Returns `Err(BinsBuildError::EmptyInput)` if `a.len()==0`.
/// Returns `Ok(Self)` otherwise.
fn from_array_with_max<S>(
a: &ArrayBase<S, Ix1>,
max_n_bins: usize,
) -> Result<Self, BinsBuildError>
where
S: Data<Elem = Self::Elem>,
{
let fd_builder = FreedmanDiaconis::from_array_with_max(a, max_n_bins);
let sturges_builder = Sturges::from_array_with_max(a, max_n_bins);
match (fd_builder, sturges_builder) {
(Err(_), Ok(sturges_builder)) => {
let builder = SturgesOrFD::Sturges(sturges_builder);
Ok(Self { builder })
}
(Ok(fd_builder), Err(_)) => {
let builder = SturgesOrFD::FreedmanDiaconis(fd_builder);
Ok(Self { builder })
}
(Ok(fd_builder), Ok(sturges_builder)) => {
let builder = if fd_builder.bin_width() > sturges_builder.bin_width() {
SturgesOrFD::Sturges(sturges_builder)
} else {
SturgesOrFD::FreedmanDiaconis(fd_builder)
};
Ok(Self { builder })
}
(Err(err), Err(_)) => Err(err),
}
}
fn build(&self) -> Bins<T> {
// Ugly
match &self.builder {
SturgesOrFD::FreedmanDiaconis(b) => b.build(),
SturgesOrFD::Sturges(b) => b.build(),
}
}
fn n_bins(&self) -> usize {
// Ugly
match &self.builder {
SturgesOrFD::FreedmanDiaconis(b) => b.n_bins(),
SturgesOrFD::Sturges(b) => b.n_bins(),
}
}
}
impl<T> Auto<T>
where
T: Ord + Send + Clone + FromPrimitive + ToPrimitive + NumOps + Zero,
{
/// The bin width (or bin length) according to the fitted strategy.
pub fn bin_width(&self) -> T {
// Ugly
match &self.builder {
SturgesOrFD::FreedmanDiaconis(b) => b.bin_width(),
SturgesOrFD::Sturges(b) => b.bin_width(),
}
}
}
/// Returns the `bin_width`, given the two end points of a range (`max`, `min`), and the number of
/// bins, consuming endpoints
///
/// `bin_width = (max - min)/n`
///
/// **Panics** if `n_bins == 0` and division by 0 panics for `T`.
fn compute_bin_width<T>(min: T, max: T, n_bins: usize) -> T
where
T: Ord + Send + Clone + FromPrimitive + ToPrimitive + NumOps + Zero,
{
let range = max - min;
range / T::from_usize(n_bins).unwrap()
}
#[cfg(test)]
mod equispaced_tests {
use super::EquiSpaced;
#[test]
fn bin_width_has_to_be_positive() {
assert!(EquiSpaced::new(0, 0, 200).is_err());
}
#[test]
fn min_has_to_be_strictly_smaller_than_max() {
assert!(EquiSpaced::new(10, 0, 0).is_err());
}
}
#[cfg(test)]
mod sqrt_tests {
use super::{BinsBuildingStrategy, Sqrt};
use ndarray::array;
#[test]
fn constant_array_are_bad() {
assert!(Sqrt::from_array(&array![1, 1, 1, 1, 1, 1, 1])
.unwrap_err()
.is_strategy());
}
#[test]
fn empty_arrays_are_bad() {
assert!(Sqrt::<usize>::from_array(&array![])
.unwrap_err()
.is_empty_input());
}
}
#[cfg(test)]
mod rice_tests {
use super::{BinsBuildingStrategy, Rice};
use ndarray::array;
#[test]
fn constant_array_are_bad() {
assert!(Rice::from_array(&array![1, 1, 1, 1, 1, 1, 1])
.unwrap_err()
.is_strategy());
}
#[test]
fn empty_arrays_are_bad() {
assert!(Rice::<usize>::from_array(&array![])
.unwrap_err()
.is_empty_input());
}
}
#[cfg(test)]
mod sturges_tests {
use super::{BinsBuildingStrategy, Sturges};
use ndarray::array;
#[test]
fn constant_array_are_bad() {
assert!(Sturges::from_array(&array![1, 1, 1, 1, 1, 1, 1])
.unwrap_err()
.is_strategy());
}
#[test]
fn empty_arrays_are_bad() {
assert!(Sturges::<usize>::from_array(&array![])
.unwrap_err()
.is_empty_input());
}
}
#[cfg(test)]
mod fd_tests {
use super::{BinsBuildingStrategy, FreedmanDiaconis};
use ndarray::array;
#[test]
fn constant_array_are_bad() {
assert!(FreedmanDiaconis::from_array(&array![1, 1, 1, 1, 1, 1, 1])
.unwrap_err()
.is_strategy());
}
#[test]
fn zero_iqr_is_bad() {
assert!(
FreedmanDiaconis::from_array(&array![-20, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 20])
.unwrap_err()
.is_strategy()
);
}
#[test]
fn empty_arrays_are_bad() {
assert!(FreedmanDiaconis::<usize>::from_array(&array![])
.unwrap_err()
.is_empty_input());
}
}
#[cfg(test)]
mod auto_tests {
use super::{Auto, BinsBuildingStrategy};
use ndarray::array;
#[test]
fn constant_array_are_bad() {
assert!(Auto::from_array(&array![1, 1, 1, 1, 1, 1, 1])
.unwrap_err()
.is_strategy());
}
#[test]
fn zero_iqr_is_handled_by_sturged() {
assert!(Auto::from_array(&array![-20, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 20]).is_ok());
}
#[test]
fn empty_arrays_are_bad() {
assert!(Auto::<usize>::from_array(&array![])
.unwrap_err()
.is_empty_input());
}
}