ndarray_glm/response/
binomial.rs1use crate::{
3 error::{RegressionError, RegressionResult},
4 glm::{DispersionType, Glm},
5 math::prod_log,
6 num::Float,
7 response::Response,
8};
9
10type BinDom = u16;
12
13pub struct Binomial<const N: BinDom>;
17
18impl<const N: BinDom> Response<Binomial<N>> for BinDom {
19 fn into_float<F: Float>(self) -> RegressionResult<F> {
20 F::from(self).ok_or_else(|| RegressionError::InvalidY(self.to_string()))
21 }
22}
23
24impl<const N: BinDom> Glm for Binomial<N> {
25 type Link = link::Logit;
27 const DISPERSED: DispersionType = DispersionType::NoDispersion;
28
29 fn log_partition<F: Float>(nat_par: F) -> F {
32 let n: F = F::from(N).unwrap();
33 n * num_traits::Float::exp(nat_par).ln_1p()
34 }
35
36 fn variance<F: Float>(mean: F) -> F {
37 let n_float: F = F::from(N).unwrap();
38 mean * (n_float - mean) / n_float
39 }
40
41 fn log_like_sat<F: Float>(y: F) -> F {
42 let n: F = F::from(N).unwrap();
43 prod_log(y) + prod_log(n - y) - prod_log(n)
44 }
45}
46
47pub mod link {
48 use super::*;
49 use crate::link::{Canonical, Link};
50 use num_traits::Float;
51
52 pub struct Logit {}
53 impl Canonical for Logit {}
54 impl<const N: BinDom> Link<Binomial<N>> for Logit {
55 fn func<F: Float>(y: F) -> F {
56 let n_float: F = F::from(N).unwrap();
57 Float::ln(y / (n_float - y))
58 }
59 fn func_inv<F: Float>(lin_pred: F) -> F {
60 let n_float: F = F::from(N).unwrap();
61 n_float / (F::one() + (-lin_pred).exp())
62 }
63 }
64}
65
66#[cfg(test)]
67mod tests {
68 use super::Binomial;
69 use crate::{error::RegressionResult, model::ModelBuilder};
70 use approx::assert_abs_diff_eq;
71 use ndarray::array;
72
73 #[test]
74 fn bin_reg() -> RegressionResult<()> {
75 const N: u16 = 12;
76 let ln2 = f64::ln(2.);
77 let beta = array![0., 1.];
78 let data_x = array![[0.], [0.], [ln2], [ln2], [ln2]];
79 let data_y = array![5, 7, 9, 6, 9];
81 let model = ModelBuilder::<Binomial<N>>::data(&data_y, &data_x).build()?;
82 let fit = model.fit()?;
83 dbg!(&fit.result);
84 dbg!(&fit.n_iter);
85 assert_abs_diff_eq!(beta, fit.result, epsilon = 0.05 * f32::EPSILON as f64);
86 Ok(())
87 }
88}